cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165509 Continued fraction expansion of sum of reciprocals of primorial numbers: 1/2 + 1/6 + 1/30 + 1/210 + ... .

Original entry on oeis.org

0, 1, 2, 2, 1, 1, 4, 1, 2, 1, 1, 6, 13, 1, 4, 1, 16, 6, 1, 1, 4, 5, 8, 1, 1, 5, 1, 22, 1, 1, 1, 2, 2, 1, 1, 46, 1, 1, 4, 1, 53, 1, 3, 2, 1, 3, 1, 2, 1, 2, 2, 8, 11, 1, 7, 1, 28, 1, 3, 1, 2, 2, 4, 7, 16, 5, 1, 1, 2, 1, 2, 1, 1, 2, 1, 5, 3, 17, 1, 7, 2, 3, 66, 1, 1, 4, 1, 27, 12, 2, 1, 1, 3, 9, 1, 12, 14, 2, 4
Offset: 0

Views

Author

Harry J. Smith, Sep 21 2009

Keywords

Examples

			0.705230171791800965147431682... = 0 + 1/(1 + 1/(2 + 1/(2 + 1/(1 + ...))))
		

Crossrefs

Cf. A064648 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ContinuedFraction( (&+[1/(&*[NthPrime(j):j in [1..n]]): n in [1..80]]) ); // G. C. Greubel, Oct 21 2018
  • Mathematica
    ContinuedFraction[Sum[1/Product[Prime[i], {i, n}], {n, 80}], 120] (* G. C. Greubel, Oct 21 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); p=1; s=x=0; for (k=1, 10^9, p*=prime(k); s+=1.0/p; if (s==x, break); x=s ); x=contfrac(s); for (n=0, 20000, write("b165509.txt", n, " ", x[n+1])) }