A165510 a(0)=1, a(1)=9, a(n) = 72*a(n-2) - a(n-1).
1, 9, 63, 585, 3951, 38169, 246303, 2501865, 15231951, 164902329, 931798143, 10941169545, 56148296751, 731615910489, 3311061455583, 49365284099625, 189031140702351, 3365269314470649, 10244972816098623, 232054417825788105
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1, 72).
Programs
-
Magma
[(18*8^n-(-9)^n)/17: n in [0..30]]; // G. C. Greubel, Oct 21 2018
-
Mathematica
LinearRecurrence[{-1,72},{1,9},30] (* Harvey P. Dale, Oct 15 2012 *)
-
PARI
vector(30, n, n--; (18*8^n-(-9)^n)/17) \\ G. C. Greubel, Oct 21 2018
Formula
G.f.: (1+10*x)/(1+x-72*x^2).
a(n) = Sum_{k=0..n} A112555(n,k)*8^k.
a(n) = (18*8^n-(-9)^n)/17. - Klaus Brockhaus, Sep 26 2009
E.g.f.: (18*exp(8*x) - exp(-9*x))/17. - G. C. Greubel, Oct 21 2018
Comments