A165552
a(1) = 1, and then a(n) is sum of k*a(k) where k
1, 1, 1, 3, 1, 6, 1, 15, 4, 8, 1, 54, 1, 10, 9, 135, 1, 78, 1, 100, 11, 14, 1, 822, 6, 16, 40, 162, 1, 262, 1, 2295, 15, 20, 13, 2142, 1, 22, 17, 2220, 1, 420, 1, 334, 180, 26, 1, 22710, 8, 238, 21, 444, 1, 2562, 17, 4818, 23, 32, 1, 10782, 1, 34, 278, 75735, 19, 856, 1, 712
Offset: 1
Examples
a(6)=6 because v=5 has six n-color perfect partitions: (1,1,1,1,1), (1,2,2), (1,2',2'), (1,1,3), (1,1,3'), and (1,1,3'').
References
- A. K. Agarwal and R. Sachdeva, Combinatorics of n-Color Perfect Partitions, Ars Combinatoria 136 (2018), pp. 29--43.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = With[{k = Most[Divisors[n]]}, k . (a /@ k)]; Array[a, 100] (* Jean-François Alcover, Mar 31 2017 *)
-
PARI
A165552(n) = if(1==n,n,sumdiv(n,d,if(d
A165552(d)))); \\ Antti Karttunen, Oct 30 2017 -
Python
from sympy import divisors from sympy.core.cache import cacheit @cacheit def a(n): return 1 if n==1 else sum(d*a(d) for d in divisors(n)[:-1]) print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Oct 30 2017, after PARI code
Formula
a(1) = 1, and for n > 1, a(n) = Sum_{d|n, d
Comments