cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A176891 Triangle T(n,k) = k if k

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 4, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 5, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Apr 28 2010

Keywords

Comments

A variant of A127093, which has T(n,n) = n. [The original definition said "Subsequence of A127093". Since all nonnegative integers are repeated infinitely often in both sequences, each one is a subsequence of the other, but there is no such relation on a row-by-row basis. - M. F. Hasler, Aug 08 2016]
Let A=A176891*A176891, B=A*A, C=B*B, D=C*C and so on, then the leftmost column in the last matrix (D) converges to A165552.

Examples

			Triangle begins:
1,
1,0,
1,0,0,
1,2,0,0,
1,0,0,0,0,
1,2,3,0,0,0,
1,0,0,0,0,0,0,
1,2,0,4,0,0,0,0,
		

Crossrefs

Formula

T(n,k) = if n=1 and k=1 then 1 elseif n=k then 0 elseif k divides n then k else 0.

Extensions

Definition corrected by M. F. Hasler, Aug 08 2016

A330774 Number of n-color perfect compositions of n.

Original entry on oeis.org

1, 1, 1, 5, 1, 11, 1, 61, 7, 15, 1, 259, 1, 19, 17, 1901, 1, 383, 1, 511, 21, 27, 1, 14147, 11, 31, 187, 859, 1, 1403, 1, 147661, 29, 39, 25, 39307, 1, 43, 33, 42351, 1, 2303, 1, 1843, 947, 51, 1, 1815811, 15, 1255, 41, 2479, 1, 46697, 33, 97339, 45, 63, 1, 219347, 1
Offset: 0

Views

Author

Augustine O. Munagi, Dec 30 2019

Keywords

Comments

An n-color perfect composition of v is a composition into j types of each part j whose sequence of parts contains one composition of every positive integer less than n.

Examples

			a(5)=11 because v=5 has eleven n-color perfect compositions: (1,1,1,1,1), (1,2,2),(2,2,1), (1,2',2'), (2',2',1), (1,1,3), (3,1,1), (1,1,3'), (3',1,1), (1,1,3''), (3'',1,1).
		

Crossrefs

A342403 a(1) = 1; a(n) = -Sum_{d|n, d < n} d * a(d).

Original entry on oeis.org

1, -1, -1, 1, -1, 4, -1, -3, 2, 6, -1, -24, -1, 8, 7, 21, -1, -38, -1, -58, 9, 12, -1, 288, 4, 14, -16, -108, -1, -180, -1, -315, 13, 18, 11, 930, -1, 20, 15, 1126, -1, -314, -1, -256, -116, 24, -1, -6960, 6, -154, 19, -354, -1, 1078, 15, 2940, 21, 30, -1, 6664, -1, 32, -198, 9765, 17
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -Sum[d a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 65}]
  • PARI
    a(n) = if (n==1, 1, -sumdiv(n, d, if (dMichel Marcus, Mar 11 2021
    
  • PARI
    up_to = 20000;
    A342403list(n) = { my(v=vector(n)); v[1] = 1; for(n=2, #v, v[n] = -sumdiv(n, d, if(d==n, 0, v[d]*d))); (v); };
    v342403 = A342403list(up_to);
    A342403(n) = v342403[n]; \\ Antti Karttunen, Jan 22 2025
    
  • Python
    from sympy import divisors
    def A342403(n): return 1 if n == 1 else -sum(d*A342403(d) for d in divisors(n) if d < n) # Chai Wah Wu, Mar 11 2021

A326824 a(1) = 1; a(n) = Sum_{d|n, d < n} phi(n/d) * d * a(d).

Original entry on oeis.org

1, 1, 2, 4, 4, 12, 6, 24, 18, 32, 10, 124, 12, 60, 72, 240, 16, 336, 18, 440, 132, 140, 22, 2088, 100, 192, 378, 1044, 28, 2096, 30, 4320, 300, 320, 312, 9636, 36, 396, 408, 10384, 40, 5040, 42, 3500, 3000, 572, 46, 61584, 294, 3920, 672, 5544, 52, 23148, 680
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[If[d < n, EulerPhi[n/d] d a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    a[1] = 1; a[n_] := Sum[GCD[n, k] a[GCD[n, k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 55}]

Formula

a(1) = 1; a(n) = Sum_{k=1..n-1} gcd(n, k) * a(gcd(n, k)).

A348661 a(1) = 1; a(n) = Sum_{d|n, d < n} d * a(d)^(n/d).

Original entry on oeis.org

1, 1, 1, 3, 1, 6, 1, 39, 4, 8, 1, 330, 1, 10, 9, 12495, 1, 1446, 1, 1620, 11, 14, 1, 1792050, 6, 16, 580, 10158, 1, 53002, 1, 2516534175, 15, 20, 13, 469241466, 1, 22, 17, 774558756, 1, 1696170, 1, 712914, 20160, 26, 1, 108457624531554, 8, 328588, 21, 6383964
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2021

Keywords

Crossrefs

Cf. A006241, A008578 (positions of 1's), A157313, A165552, A196545, A281145.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[If[d < n, d a[d]^(n/d), 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 52}]

Formula

For n > 1, a(n) is the coefficient of x^n/n in expansion of -log(Product_{k=1..n-1} (1 - a(k)*x^k)).
Showing 1-5 of 5 results.