cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165648 Number of disconnected simple graphs on n vertices with each component regular.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 23, 41, 77, 149, 397, 1246, 21135, 430933, 51156773, 3044120326, 1704554902881, 446193132548644, 650868899188542416, 431014163502227412545, 2886915606822315071638459, 8841362446647790021087061250, 152946959203764346079534774815394, 1208238394473886999896406262410758886
Offset: 1

Views

Author

Jason Kimberley, Sep 23 2009

Keywords

Examples

			The a(2)=1 graph is: 2K_1. The a(3)=2 graphs are: 3K_1, K_1+K_2. The a(4)=4 graphs are: 4K_1, 2K_1+K_2, K_1+K_3, 2K_2.
		

Crossrefs

Programs

  • Mathematica
    A005177 = Cases[Import["https://oeis.org/A005177/b005177.txt", "Table"], {, }][[All, 2]]~Join~{0};
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[DivisorSum[j, # p[#]&] b[n - j], {j, 1, n}]/n]; b];
    b = etr[A005177[[# + 1]]&];
    a[n_] := b[n] - A005177[[n + 1]];
    a /@ Range[17] (* Jean-François Alcover, Dec 02 2019 *)

Formula

a(n) = A165647(n) - A005177(n)
= Euler_transformation(A005177)(n) - A005177(n).

Extensions

Terms a(18) and beyond from Andrew Howroyd, May 21 2020