A165662 Period 5: repeat 4,4,8,6,8.
4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8, 4, 4, 8, 6, 8
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Programs
-
Magma
[(2*n^2+8*n+4) mod 10 : n in [0..100]]; // Wesley Ivan Hurt, Sep 06 2014
-
Maple
A165662:=n->2*n^2+8*n+4 mod 10: seq(A165662(n), n=0..100); # Wesley Ivan Hurt, Sep 06 2014
-
Mathematica
Table[Mod[2 n^2 + 8 n + 4, 10], {n, 0, 100}] (* Wesley Ivan Hurt, Sep 06 2014 *) CoefficientList[Series[2 (2 + 2 x + 4 x^2 + 3 x^3 + 4 x^4)/(1 - x^5), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 06 2014 *)
-
PARI
a(n)=[4,4,8,6,8][n%5+1] \\ Edward Jiang, Sep 06 2014
Formula
a(n) = (2*n^2 + 8*n + 4) mod 10.
From Wesley Ivan Hurt, Sep 06 2014: (Start)
G.f.: 2*(2 + 2*x + 4*x^2 + 3*x^3 + 4*x^4)/(1-x^5). [corrected by Georg Fischer, May 11 2019]
Recurrence: a(n) = a(n-5).
a(n) = (2*A008865(n+1)) mod 10.
a(n) = (-A147973(n+4)) mod 10.
a(n+1) = 2*A053796(n) + 4. (End)
Extensions
Definition simplified, offset corrected by R. J. Mathar, Sep 25 2009
Name and offset changed by Wesley Ivan Hurt, Sep 06 2014
Comments