cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165684 Dimension of the space of Siegel cusp forms of genus 2 and dimension 2n (associated with full modular group Gamma_2).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 11, 13, 13, 17, 18, 20, 23, 26, 27, 32, 34, 37, 41, 46, 47, 54, 57, 61, 67, 73, 75, 84, 88, 94, 101, 109, 112, 123, 129, 136, 145, 155, 159, 173, 180, 189, 200, 212, 218, 234, 243, 254, 267, 282, 289, 308, 319
Offset: 1

Views

Author

Kilian Kilger (kilian(AT)nihilnovi.de), Sep 24 2009

Keywords

Examples

			a(5)=1 as the space of Siegel cusp forms of genus 2 and weight 10 is one-dimensional.
		

References

  • M. Eie, Dimensions of spaces of Siegel cusp forms of degree two and three, AMS, 1984, p. 44-45.

Crossrefs

Cf. A029143 (dimension of the full space of Siegel modular forms of genus 2).

Programs

  • Mathematica
    N1[k_] := 2^(-7)*3^(-3)*5^(-1) (2 k^3 + 96 k^2 - 52 k - 3231); N2[k_] := 2^(-5)*3^(-3)*(17 k - 294) /; Mod[k, 12] == 0; N2[k_] := 2^(-5)*3^(-3)*(-25 k + 254) /; Mod[k, 12] == 2; N2[k_] := 2^(-5)*3^(-3)*(17 k - 86) /; Mod[k, 12] == 4; N2[k_] := 2^(-5)*3^(-3)*(-k - 42) /; Mod[k, 12] == 6; N2[k_] := 2^(-5)*3^(-3)*(-7 k + 2) /; Mod[k, 12] == 8; N2[k_] := 2^(-5)*3^(-3)*(-k + 166) /; Mod[k, 12] == 10; N3[k_] := 2^(-7)*3^(-3)*1131 /; Mod[k, 12] == 0; N3[k_] := 2^(-7)*3^(-3)*(-229) /; Mod[k, 12] == 2; N3[k_] := 2^(-7)*3^(-3)*427 /; Mod[k, 12] == 4; N3[k_] := 2^(-7)*3^(-3)*123 /; Mod[k, 12] == 6; N3[k_] := 2^(-7)*3^(-3)*203 /; Mod[k, 12] == 8; N3[k_] := 2^(-7)*3^(-3)*571 /; Mod[k, 12] == 10; N4[k_] := 5^(-1) /; Mod[k, 5] == 0; N4[k_] := -5^(-1) /; Mod[k, 5] == 3; N4[k_] := 0 /; Mod[k, 5] == 1 || Mod[k, 5] == 2 || Mod[k, 5] == 4; DimSk[k_] := N1[k] + N2[k] + N3[k] + N4[k]/;Mod[k,2]==0; Table[DimSk[2k],{k,1,100}]
    CoefficientList[Series[-x^4*(x^6 - x - 1)/((1 - x^2)*(1 - x^3)*(1 - x^5)*(1 - x^6)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 20 2014 *)
    LinearRecurrence[{0,1,1,0,0,1,-1,-2,-1,1,0,0,1,1,0,-1},{0,0,0,0,1,1,1,2,2,3,4,5,5,7,8,9},70] (* Harvey P. Dale, Dec 25 2016 *)

Formula

G.f.: -x^5*(x^6-x-1) / ((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)). - Colin Barker, Mar 30 2013
a(n) = 1/1080*n^3 + 1/45*n^2 + O(n). (from g.f.) - Ralf Stephan, Jun 20 2014

Extensions

More terms from Wesley Ivan Hurt, Jun 20 2014