cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165777 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718735, 58593600, 292967640, 1464836400, 7324173000, 36620820000, 183103875000, 915518250000, 4577585625000, 22887900000000, 114439359375210, 572196093753000, 2860976953154040, 14304867187737000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003948, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718735];; for n in [11..30] do a[n]:=4*Sum([1..9], j-> a[n-j]) -10*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 17 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-5*t+14*t^10-10*t^11) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    A165777 := proc(n)
    coeftayl( (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), t=0, n);
    end proc:
    seq(A165777(n), n=0..25); # Wesley Ivan Hurt, Nov 14 2014
  • Mathematica
    CoefficientList[Series[(t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t, 0, 25}], t] (* Wesley Ivan Hurt, Nov 14 2014 *)
    coxG[{10, 10, -4}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-5*t+14*t^10-10*t^11)) \\ G. C. Greubel, Sep 17 2019
    
  • Sage
    def A165777_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-5*t+14*t^10-10*t^11)).list()
    A165777_list(30) # G. C. Greubel, Sep 17 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).

Extensions

More terms from Wesley Ivan Hurt, Nov 14 2014