cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A101260 Numbers n whose abundance is 56.

Original entry on oeis.org

84, 140, 224, 308, 364, 476, 532, 644, 812, 868, 1036, 1148, 1204, 1316, 1372, 1484, 1652, 1708, 1876, 1988, 2044, 2212, 2324, 2492, 2716, 2828, 2884, 2996, 3052, 3164, 3556, 3668, 3836, 3892, 4172, 4228, 4396, 4544, 4564, 4676, 4844, 5012, 5068, 5348
Offset: 1

Views

Author

Vassil K. Tintschev (tinchev(AT)sunhe.jinr.ru), Dec 17 2004

Keywords

Comments

If n is of the form p*28, where p is a prime distinct from 2 or 7 then n is in this sequence, note that 28 is a perfect number. The terms in the sequence but not divisible by 28 are 4544, 9272, 14552, 25472, 74992, 495104... - Enrique Pérez Herrero, Apr 15 2012
If p=2^k-57 is prime (cf. A165778), then 2^(k-1)*p is in the sequence: For the first such k=6,7,8,10,16,19,22,28,..., this yields 224, 4544, 25472, 495104, 2145615872, 137424011264, 8795973484544, 36028789368553472, ... - M. F. Hasler, Apr 15 2012

Examples

			84 is a term of the sequence because 2*2*3*7 = 84 and 84 - 42 - 28 - 21 - 14 - 12 - 7 - 6 - 4 - 3 - 2 = g(84) = -55.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^4] |DivisorSigma(1,n) eq 2*n+56]; // Vincenzo Librandi, Jul 30 2015
  • Mathematica
    Select[ Range[5500], DivisorSigma[1, # ] == 2# + 56 &] (* Robert G. Wilson v, Dec 22 2004 *)

A165779 Numbers k such that |2^k-993| is prime.

Original entry on oeis.org

1, 4, 6, 10, 14, 17, 26, 29, 54, 62, 77, 121, 344, 476, 1012, 1717, 1954, 2929, 2993, 3014, 3304, 4704, 8882, 24042, 43572, 45722, 54913, 57893, 72566, 74473, 82092, 117302
Offset: 1

Views

Author

M. F. Hasler, Oct 11 2009

Keywords

Comments

If p = 2^k-993 is prime, then 2^(k-1)*p is a solution to sigma(x)-2x = 992 = 2^5*(2^5-1) = 2*A000396(3).

Examples

			a(4) = 10 since 2^10-993 = 31 is prime.
For exponents a(1) = 1, a(2) = 4 and a(3) = 6, we get 2^a(n)-993 = -991, -977 and -929 which are negative, but which are prime in absolute value.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1100] |IsPrime(2^n-993)]; // Vincenzo Librandi, Apr 09 2016
    
  • Mathematica
    Select[Table[{n, Abs[2^n - 993]}, {n,0,100}], PrimeQ[#[[2]]] &][[All, 1]] (* G. C. Greubel, Apr 08 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(abs(2^n-993)), print1(n, ", "))); \\ Altug Alkan, Apr 08 2016
    
  • Python
    from sympy import isprime, nextprime
    def afind(limit):
        k, pow2 = 1, 2
        for k in range(1, limit+1):
            if isprime(abs(pow2-993)):
                print(k, end=", ")
            k += 1
            pow2 *= 2
    afind(2000) # Michael S. Branicky, Dec 26 2021

Extensions

a(23) from Altug Alkan, Apr 08 2016
a(24) from Michael S. Branicky, Dec 26 2021
a(25)-a(26) from Michael S. Branicky, Apr 06 2023
a(27)-a(32) from Michael S. Branicky, Sep 25 2024

A165780 Numbers n such that |2^n-16257| is prime.

Original entry on oeis.org

2, 3, 6, 8, 10, 12, 14, 16, 20, 22, 26, 30, 34, 36, 38, 43, 44, 50, 58, 64, 68, 80, 116, 142, 146, 254, 296, 298, 306, 396, 456, 730, 876, 1004, 1006, 1051, 1094, 1776, 1896, 1908, 2502, 2876, 3824, 3882, 4796, 4818, 5006, 5704, 6722, 8467, 9676
Offset: 1

Views

Author

M. F. Hasler, Oct 11 2009

Keywords

Comments

If p=2^n-16257 is prime, then 2^(n-1)*p is a solution to sigma(x)-2x = 16256 = 2^7*(2^7-1) = 2*A000396(4).

Examples

			a(7)=14 since 2^14-16257 = 127 is prime.
For exponents a(1)=2 through a(6)=12, we get negative values for 2^a(k)-16257, which are prime in absolute value.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1100] |IsPrime(2^n-16257)]; // Vincenzo Librandi, Apr 09 2016
  • Mathematica
    Select[Table[{n, Abs[2^n - 16257]},{n,0,100}], PrimeQ[#[[2]]] &][[All, 1]](* G. C. Greubel, Apr 08 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(abs(2^n-16257)), print1(n, ", "))); \\ Altug Alkan, Apr 08 2016
    

Extensions

More terms from Altug Alkan, Apr 08 2016
Showing 1-3 of 3 results.