cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165809 a(n) = 3*n*(310*n^2 + 63*n - 12).

Original entry on oeis.org

1083, 8124, 26703, 62400, 120795, 207468, 327999, 487968, 692955, 948540, 1260303, 1633824, 2074683, 2588460, 3180735, 3857088, 4623099, 5484348, 6446415, 7514880, 8695323, 9993324, 11414463, 12964320, 14648475, 16472508
Offset: 1

Views

Author

A.K. Devaraj, Sep 29 2009

Keywords

Comments

Old name was: Related to A165808; this sequence is that of rational integer coefficients of sqrt(-1) in the quotients f(x+k*f(x))/f(x) where f(x) = x^3 + 2x +11 and x = 2 +3i.

Programs

  • GAP
    List([1..35], n-> 3*n*(310*n^2 + 63*n - 12)); # G. C. Greubel, Sep 02 2019
  • Magma
    [3*n*(310*n^2 + 63*n - 12): n in [1..35]]; // G. C. Greubel, Sep 02 2019
    
  • Maple
    seq(3*n*(310*n^2 + 63*n - 12), n=1..35); # G. C. Greubel, Sep 02 2019
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1083, 8124, 26703, 62400}, 50] (* G. C. Greubel, Apr 09 2016 *)
    Table[3n(310n^2+63n-12),{n,30}] (* Harvey P. Dale, Jun 15 2021 *)
  • PARI
    a(n)=3*n*(310*n^2+63*n-12) \\ Charles R Greathouse IV, Jul 07 2013
    
  • Sage
    [3*n*(310*n^2 + 63*n - 12) for n in (1..35)] # G. C. Greubel, Sep 02 2019
    

Formula

From R. J. Mathar, Sep 30 2009: (Start)
G.f.: 3*x*(361 + 1264*x + 235*x^2)/(1-x)^4.
a(n) = 3*n*(310*n^2 + 63*n - 12). (End)
From G. C. Greubel, Apr 09 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: 3*x*(361 + 993*x + 310*x^2)*exp(x). (End)

Extensions

More terms from R. J. Mathar, Sep 30 2009