cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165881 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516821, 67838877299700, 1221099791339367, 21979796243114412, 395636332358163924, 7121453982124831776
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170738, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • GAP
    a:=[19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516821];; for n in [11..20] do a[n]:=17*Sum([1..9], j-> a[n-j]) -153*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-18*t+170*t^10-153*t^11) )); // G. C. Greubel, Sep 24 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-18*t+170*t^10-153*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 24 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-18*t+170*t^10-153*t^11), {t, 0, 20}], t] (* G. C. Greubel, Apr 17 2016 *)
    coxG[{10,153,-17}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 23 2017 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-18*t+170*t^10-153*t^11)) \\ G. C. Greubel, Sep 24 2019
    
  • Sage
    def A163878_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-18*t+170*t^10-153*t^11)).list()
    A163878_list(20) # G. C. Greubel, Sep 24 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).