A166100 Sum of those positive i <= 2n+1, for which J(i,2n+1)=+1. Here J(i,k) is the Jacobi symbol.
1, 1, 5, 7, 27, 22, 39, 15, 68, 76, 63, 92, 250, 117, 203, 186, 165, 175, 333, 156, 410, 430, 270, 423, 1029, 357, 689, 440, 513, 767, 915, 504, 780, 1072, 759, 994, 1314, 725, 1155, 1343, 2187, 1577, 1360, 957, 1958, 1547, 1395, 1330, 2328, 1485, 2525
Offset: 0
Keywords
Examples
For n=5, we get odd number 11 (2*5+1), and J(i,11) = 1,-1,1,1,1,-1,-1,-1,1,-1,0 when i ranges from 1 to 11, J(i,11) getting value 1 when i=1, 3, 4, 5 and 9, thus a(5)=22.
Links
- A. Karttunen, Table of n, a(n) for n = 0..131071
- Wikipedia, Jacobi symbol
Crossrefs
Programs
-
Mathematica
Table[Total[Flatten[Position[JacobiSymbol[Range[2n+1],2n+1],1]]],{n,0,50}] (* Harvey P. Dale, Jun 19 2013 *)
-
Python
from sympy import jacobi_symbol as J def a(n): return sum([i for i in range(1, 2*n + 2) if J(i, 2*n + 1)==1]) # Indranil Ghosh, Jun 12 2017
Comments