cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165931 a(1) = 1, for n > 1: a(n) = phi(sum of the previous terms) where phi is Euler's totient function.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 8, 22, 24, 44, 112, 120, 176, 520, 692, 1732, 1440, 2592, 4032, 6480, 11088, 18720, 23760, 43200, 69984, 123120, 174960, 321732, 408240, 641520, 1139184, 1959552, 2799360, 5073840, 8550684, 12830400, 20820240, 36684900, 60993000, 101803608, 127591200, 231575760
Offset: 1

Views

Author

Jaroslav Krizek, Sep 30 2009

Keywords

Comments

a(1) = 1, for n > 1: a(n) = phi(Sum_{i=1..n-1} a(i)) = where phi is A000010. a(n) is the inverse of partial sums of A074693(n), i.e., a(1) = A074693(1), and for n > 1, a(n) = A074693(n) - A074693(n - 1), i.e., the first differences of A074693.

Examples

			For n = 4, a(4) = phi(a(1) + a(2) + a(3)) = phi(1 + 1 + 1) = phi(3) = 2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n,
          numtheory[phi](b(n-1))+b(n-1))
        end:
    a:= n-> b(n)-b(n-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 02 2020
  • Mathematica
    a[1] := 1; a[n_] := a[n] = EulerPhi[Plus @@ Table[a[m], {m, n - 1}]]; Table[a[n], {n, 30}]
  • PARI
    first(n) = {my(res = vector(n), t = 1); res[1] = 1; for(i = 2, n, c = eulerphi(t); res[i] = c; t+=c); res} \\ David A. Corneth, Oct 02 2020

Extensions

Terms verified by Alonso del Arte, Oct 12 2009
More terms from David A. Corneth, Oct 02 2020