A165935 a(n) = (-1)^(n-1)*n*(4n^2-5)^2.
1, -242, 2883, -13924, 45125, -115926, 255367, -504008, 915849, -1560250, 2523851, -3912492, 5853133, -8495774, 12015375, -16613776, 22521617, -30000258, 39343699, -50880500
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (-6,-15,-20,-15,-6,-1).
Crossrefs
Cf. A016757.
Programs
-
Mathematica
Table[(-1)^(n - 1)*n*(4*n^2 - 5)^2, {n, 1, 50}] (* G. C. Greubel, Apr 18 2016 *) LinearRecurrence[{-6,-15,-20,-15,-6,-1},{1,-242,2883,-13924,45125,-115926},20] (* Harvey P. Dale, Mar 24 2020 *)
-
PARI
vector(100, n, (-1)^(n-1)*n*(4*n^2-5)^2) \\ Altug Alkan, Apr 18 2016
Formula
G.f.: x*(1-236*x+1446*x^2-236*x^3+x^4) / (1+x)^6. - R. J. Mathar, Nov 27 2011
E.g.f.: x*(1 - 120*x + 360*x^2 - 160*x^3 + 16*x^4)*exp(-x). - Ilya Gutkovskiy, Apr 17 2016
Comments