cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165943 a(n) = A061037(7*n+2).

Original entry on oeis.org

0, 77, 63, 525, 56, 1365, 483, 2597, 210, 4221, 1295, 6237, 462, 8645, 2499, 11445, 812, 14637, 4095, 18221, 1260, 22197, 6083, 26565, 1806, 31325, 8463, 36477, 2450, 42021, 11235, 47957, 3192, 54285, 14399, 61005, 4032, 68117, 17955, 75621, 4970
Offset: 0

Views

Author

Paul Curtz, Oct 01 2009

Keywords

Comments

The (2k+1)-sections A061037((2*k+1)*n+2) are multiples of 2k+1:
0,...21,...15,..117,...12,..285,...99,..525,...42,..837,..255, k=1, A142590
0,...45,...35,..285,...30,..725,..255,.1365,..110,.2205,..675, k=2, A165248
0,...77,...63,..525,...56,.1365,..483,.2597,..210,.4221,.1295, k=3, here
0,..117,...99,..837,...90,.2205,..783,.4221,..342,.6885,.2115, k=4,
0,..165,..143,.1221,..132,.3245,.1155,.6237,..506,10197,.3135, k=5
0,..221,..195,.1677,..182,.4485,.1599,.8645,..702,14157,.4355, k=6
After division by 2k+1 these define a table T'(k,c) :
0,....7,....5,...39,....4,...95,...33,..175,...14,..279,...85, k=1, A142883
0,....9,....7,...57,....6,..145,...51,..273,...22,..441,..135, k=2
0,...11,....9,...75,....8,..195,...69,..371,...30,..603,..185, k=3
0,...13,...11,...93,...10,..245,...87,..469,...38,..765,..235, k=4
0,...15,...13,..111,...12,..295,..105,..567,...46,..927,..285, k=5
0,...17,...15,..129,...14,..345,..123,..665,...54,.1089,..335, k=6
Differences downwards each second column in this second table are 2 = 7-5 = 9-7..; 18 = 57-39 = 75-57..; 50 = 145-95 = 195-145... = A077591(n+1) = 2*A016754.
The difference T'(k+1,c)-T'(k,c) is 0, 2, 2, 18, 2, 50, 18, 98, 8 ... = 2*A181318(c) =A061037(c-2)+A061037(c+2). - Paul Curtz, Mar 12 2012
Let b(n)= a(n) mod 11. The sequence b(n) has the property b(n+44) = b(n) with the first 43 values being {0, 0 , 8, 1, 1, 10, 1, 1, 8, 8, 0, 0, 10, 5, 5, 9, 7, 1, 5, 6, 10, 7, 0, 2, 1, 1, 8, 1, 5, 8, 2, 0, 8, 10, 6, 5, 10, 7, 9, 5, 0, 10, 0}. - G. C. Greubel, Apr 18 2016

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3))); // G. C. Greubel, Sep 19 2018
  • Maple
    seq(numer(1/4 - 1/(7*n+2)^2), n=0..50); # Robert Israel, Apr 20 2016
  • Mathematica
    Table[Numerator[1/4 - 1/(7 n + 2)^2], {n, 0, 40}] (* Michael De Vlieger, Apr 19 2016 *)
    CoefficientList[Series[7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 19 2018 *)
  • PARI
    a(n) = numerator(1/4 - 1/(7*n+2)^2); \\  Altug Alkan, Apr 18 2016
    
  • PARI
    x='x+O('x^50); concat([0], Vec(7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3))) \\ G. C. Greubel, Sep 19 2018
    

Formula

a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12), n>12. - Conjectured by R. J. Mathar, Mar 02 2010, proved by Robert Israel, Apr 20 2016
From Ilya Gutkovskiy, Apr 19 2016: (Start)
G.f.: 7*x*(11 + 9*x + 75*x^2 + 8*x^3 + 162*x^4 + 42*x^5 + 146*x^6 + 6*x^7 + 51*x^8 + 5*x^9 + 3*x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3).
a(n) = -7*n*(7*n + 4)*(27*(-1)^n + 6*cos((Pi*n)/2) - 37)/64. (End)

Extensions

Partially edited and extended by R. J. Mathar, Mar 02 2010
Removed division by 7 in definition and formula - R. J. Mathar, Mar 23 2010