cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165973 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128905925, 2479553222640000, 61988830565797200, 1549720764139860000, 38743019103369750000, 968575477581075000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128905925];; for n in [11..30] do a[n]:=24*Sum([1..9], j-> a[n-j]) -300*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11) )); // G. C. Greubel, Sep 26 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 26 2019
  • Mathematica
    coxG[{10,300,-24}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 03 2016 *)
    CoefficientList[Series[(1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11), {t, 0, 25}], t] (* G. C. Greubel, Sep 26 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11)) \\ G. C. Greubel, Sep 26 2019
    
  • Sage
    def A165973_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11)).list()
    A165973_list(30) # G. C. Greubel, Sep 26 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1).