A232806
a(n) = a(n-1)^2/2 + 5/2, a(0) = 1.
Original entry on oeis.org
1, 3, 7, 27, 367, 67347, 2267809207, 2571479299676984427, 3306252894333617140505030630200259167
Offset: 0
A294082
Square array read by antidiagonals: T(m,n) = T(m,n-1)^2 - T(m,n-2)^2 + T(m,n-2) with T(1,n) = 1, T(m,0) = 1, and T(m,1) = m.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 14, 9, 4, 1, 1, 184, 75, 16, 5, 1, 1, 33674, 5553, 244, 25, 6, 1, 1, 1133904604, 30830259, 59296, 605, 36, 7, 1, 1, 1285739649838492214, 950504839176825, 3515956324, 365425, 1266, 49, 8, 1
Offset: 1
Array begins:
=============================================================================
m\n| 0 1 2 3 4 5 6
---|-------------------------------------------------------------------------
1 | 1 1 1 1 1 1 1
2 | 1 2 4 14 184 33674 1133904604
3 | 1 3 9 75 5553 30830259 950504839176825
4 | 1 4 16 244 59296 3515956324 12361948868759636656
5 | 1 5 25 605 365425 133535065205 17831613639170066626825
6 | 1 6 36 1266 1601496 2564787836526 6578136646389154911912156
7 | 1 7 49 2359 5562529 30941723313319 957390241597957573719482449
8 | 1 8 64 4040 16317568 266263009117064 70895990024073440521846863040
...
-
t[n_, m_] := t[n -1, m]^2 - t[n -2, m]^2 + t[n -2, m]; t[0, m_] := 1; t[1, m_] := m; Table[ t[n -m +1, m], {n, 0, 8}, {m, n +1}] // Flatten
(* to produce the table *) Table[t[n, m], {m, 8}, {n, 0, 6}] // TableForm (* Robert G. Wilson v, Feb 09 2018 *)
-
T(n, k) = if (k<0, 0, if (n==1, 1, if (k==0, 1, if (k==1, n, T(n, k-1)^2 - T(n, k-2)^2 + T(n, k-2)))));
tabl(nn) = for (n=1, nn , for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, Mar 06 2018
Showing 1-2 of 2 results.
Comments