cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166128 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909140976, 26228105183354880, 813071260683525120, 25205209081174517760, 781361481515952460800, 24222205926980341002240
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170751, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1 -31*t +495*t^10 -465*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Mar 11 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1 -31*t +495*t^10 -465*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 26 2016 *)
    coxG[{465, 10, -30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Mar 11 2020 *)
  • Sage
    def A166128_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
    return P( (1+t)*(1-t^10)/(1 -31*t +495*t^10 -465*t^11) ).list() A166128_list(30) # G. C. Greubel, Mar 11 2020

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).