A166129 Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 33, 1056, 33792, 1081344, 34603008, 1107296256, 35433480192, 1133871366144, 36283883716608, 1161084278930928, 37154696925772800, 1188950301624189456, 38046409651956777984, 1217485108862063788032, 38959523483568341778432
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (31, 31, 31, 31, 31, 31, 31, 31, 31, -496).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-32*t+527*t^10-496*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1 -32*t +527*t^10 -496*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 26 2016 *) coxG[{496, 10, -31}] (* The coxG program is at A169452 *) (* G. C. Greubel, Mar 11 2020 *)
-
Sage
def A166129_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^10)/(1-32*t+527*t^10-496*t^11) ).list() A166129_list(30) # G. C. Greubel, Mar 11 2020
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^10 - 31*t^9 - 31*t^8 - 31*t^7 - 31*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
Comments