cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166143 a(n) = 3*n^2 + 3*n - 5.

Original entry on oeis.org

1, 13, 31, 55, 85, 121, 163, 211, 265, 325, 391, 463, 541, 625, 715, 811, 913, 1021, 1135, 1255, 1381, 1513, 1651, 1795, 1945, 2101, 2263, 2431, 2605, 2785, 2971, 3163, 3361, 3565, 3775, 3991, 4213, 4441, 4675, 4915, 5161, 5413, 5671, 5935, 6205
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Crossrefs

Cf. A003215.

Programs

  • Magma
    [-5+3*n^2+3*n: n in [1..50]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1}, {1,13,31}, 50] (* G. C. Greubel, Apr 26 2016 *)
    Table[3 n^2 + 3 n - 5, {n, 45}] (* or *)
    Rest@ CoefficientList[Series[(5 - 16 x + 5 x^2)/(-1 + x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Apr 27 2016 *)
  • PARI
    a(n)=3*n*(n+1)-5 \\ Charles R Greathouse IV, Jan 11 2012

Formula

a(n) = a(n-1)+6*n, a(1)=1.
From G. C. Greubel, Apr 26 2016: (Start)
G.f.: (5 - 16*x + 5*x^2)/(-1 + x)^3.
E.g.f.: (-5 + 6*x + 3*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A003215(n) - 6. - Leo Tavares, Jul 05 2021
Sum_{n>=0} 1/a(n) = Pi*tan(sqrt(23/3)*Pi/2)/sqrt(69). - Vaclav Kotesovec, Jul 06 2021

Extensions

New name from Charles R Greathouse IV, Jan 11 2012