cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A166873 a(n) = a(n-1) + 12*n for n > 1; a(1) = 1.

Original entry on oeis.org

1, 25, 61, 109, 169, 241, 325, 421, 529, 649, 781, 925, 1081, 1249, 1429, 1621, 1825, 2041, 2269, 2509, 2761, 3025, 3301, 3589, 3889, 4201, 4525, 4861, 5209, 5569, 5941, 6325, 6721, 7129, 7549, 7981, 8425, 8881, 9349, 9829, 10321, 10825, 11341, 11869
Offset: 1

Views

Author

Klaus Brockhaus, Oct 22 2009

Keywords

Comments

Binomial transform of 1,24,12,0,0,0,....

Crossrefs

Cf. A008594 (multiples of 12).
A000217, A028387, A133694, A059993, A166137, A166143, A166146, A166147, A166148, A166150, A166144 have recurrence a(n-1)+k*n with a(1)=1 or a(0)=1 for k = 1..11 resp.

Programs

  • Magma
    [ n eq 1 select 1 else Self(n-1)+12*n: n in [1..44] ];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,25,61},50] (* G. C. Greubel, May 27 2016 *)
  • PARI
    a(n)=6*n^2+6*n-11 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 6*n^2 + 6*n - 11.
a(n) = 2*a(n-1) - a(n-2) + 12.
G.f.: x*(1 + 22*x - 11*x^2)/(1-x)^3.
a(n) - a(n-1) = A008594(n) for n > 1.
From G. C. Greubel, May 27 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (-11 + 12*x + 6*x^2)*exp(x) + 11. (End)

A166154 a(n) = 7*n*(n+1)/2 - 5.

Original entry on oeis.org

2, 16, 37, 65, 100, 142, 191, 247, 310, 380, 457, 541, 632, 730, 835, 947, 1066, 1192, 1325, 1465, 1612, 1766, 1927, 2095, 2270, 2452, 2641, 2837, 3040, 3250, 3467, 3691, 3922, 4160, 4405, 4657, 4916, 5182, 5455, 5735, 6022, 6316, 6617, 6925, 7240, 7562
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Crossrefs

Cf. A166146.

Programs

  • Magma
    [7*n*(n+1)/2-5: n in [1..50]]; // Vincenzo Librandi, Sep 13 2013
    
  • Mathematica
    Table[7 n (n + 1)/2 - 5, {n, 100}] (* or *) CoefficientList[Series[(- 2 - 10 x + 5 x^2) / (x - 1)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 13 2013 *)
    LinearRecurrence[{3,-3,1}, {2,16,37}, 50] (* G. C. Greubel, May 01 2016 *)
  • PARI
    a(n)=7*n*(n+1)/2-5 \\ Charles R Greathouse IV, May 02 2016

Formula

a(n) = A166146(n)+1.
a(n) = a(n-1)+7*n = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-2-10*x+5*x^2)/(x-1)^3.
E.g.f.: (7/2)*((x^2 + 2*x - 5)*exp(x) + 5). - G. C. Greubel, May 01 2016
Sum_{n>=1} 1/a(n) = 1/5 + (2*Pi/sqrt(329))*tan(sqrt(47/7)*Pi/2). - Amiram Eldar, Feb 20 2023

Extensions

Definition replaced by polynomial, A-number corrected, formulas added by R. J. Mathar, Oct 12 2009
Showing 1-2 of 2 results.