A166147 a(n) = 4*n^2 + 4*n - 7.
1, 17, 41, 73, 113, 161, 217, 281, 353, 433, 521, 617, 721, 833, 953, 1081, 1217, 1361, 1513, 1673, 1841, 2017, 2201, 2393, 2593, 2801, 3017, 3241, 3473, 3713, 3961, 4217, 4481, 4753, 5033, 5321, 5617, 5921, 6233, 6553, 6881, 7217, 7561, 7913, 8273, 8641
Offset: 1
References
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Stephen Wolfram, A New Kind of Science.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for sequences related to cellular automata.
- Index to 2D 5-Neighbor Cellular Automata.
- Index to Elementary Cellular Automata.
Crossrefs
Cf. A028886.
Programs
-
Magma
I:=[1, 17, 41]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012
-
Mathematica
CoefficientList[Series[(1+14x-7x^2)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 17, 41}, 50] (* Vincenzo Librandi, Mar 15 2012 *) Table[4 n^2 + 4 n - 7, {n, 46}] (* Michael De Vlieger, Apr 27 2016 *)
-
PARI
a(n)=8*binomial(n+1,2)-7 \\ Charles R Greathouse IV, Jan 11 2012
Formula
a(n) = a(n-1)+8*n with n>1, a(1)=1.
From Vincenzo Librandi, Mar 15 2012: (Start)
G.f.: x*(1+14*x-7*x^2)/(1-x)^3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). (End)
E.g.f.: (-7 + 8*x + 4*x^2)*exp(x) + 7. - G. C. Greubel, Apr 26 2016
Sum_{n>=1} 1/a(n) = 1/7 + (Pi/(8*sqrt(2)))*tan(sqrt(2)*Pi). - Amiram Eldar, Feb 20 2023
Extensions
New name from Charles R Greathouse IV, Jan 11 2012
Comments