cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166168 G.f.: exp( Sum_{n>=1} Lucas(n^2)*x^n/n ) where Lucas(n) = A000204(n).

Original entry on oeis.org

1, 1, 4, 29, 585, 34212, 5600397, 2490542953, 2968152042068, 9416588994339205, 79216509536543420965, 1762508872870620792746360, 103525263562786817866762466405, 16031370626878431551103688398524485
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2009

Keywords

Comments

Conjectured to consist entirely of integers.
The Lucas numbers (A000204) forms the logarithmic derivative of the Fibonacci numbers (A000045).
Note that Lucas(n^2) = [(1+sqrt(5))/2]^(n^2) + [(1-sqrt(5))/2]^(n^2).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 29*x^3 + 585*x^4 + 34212*x^5 +...
log(A(x)) = x + 7*x^2/2 + 76*x^3/3 + 2207*x^4/4 + 167761*x^5/5 + 33385282*x^6/6 +...+ Lucas(n^2)*x^n/n +...
		

Crossrefs

Programs

  • Maple
    with(combinat): seq(coeff(series(exp(add((fibonacci(k^2-1)+fibonacci(k^2+1))*x^k/k,k=1..n)),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Dec 18 2018
  • Mathematica
    CoefficientList[Series[Exp[Sum[LucasL[n^2]*x^n/n, {n, 1, 200}]], {x, 0, 50}], x](* G. C. Greubel, May 06 2016 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(fibonacci(m^2-1)+fibonacci(m^2+1))*x^m/m)+x*O(x^n)),n)}

Formula

a(n) = (1/n)*Sum_{k=1..n} Lucas(k^2)*a(n-k), a(0)=1.
Logarithmic derivative yields A166169.