A166172 Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 40, 1560, 60840, 2372760, 92537640, 3608967960, 140749750440, 5489240267160, 214080370419240, 8349134446349580, 325616243407603200, 12699033492895339200, 495262306222871990400, 19315229942690204328000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (38, 38, 38, 38, 38, 38, 38, 38, 38, -741).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-39*t+779*t^10-741*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-39*t+779*t^10-741*t^11), {t,0,30}], t] (* G. C. Greubel, May 06 2016 *) coxG[{10,741,-38}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 31 2017 *)
-
Sage
def A163878_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^10)/(1-39*t+779*t^10-741*t^11) ).list() A163878_list(30) # G. C. Greubel, Aug 10 2019
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5 - 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1).
Comments