cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166189 Number of 3 X 3 X 3 triangular nonnegative integer arrays with all sums of an element and its neighbors <= n.

Original entry on oeis.org

1, 7, 29, 90, 232, 524, 1072, 2030, 3613, 6111, 9905, 15484, 23464, 34608, 49848, 70308, 97329, 132495, 177661, 234982, 306944, 396396, 506584, 641186, 804349, 1000727, 1235521, 1514520, 1844144, 2231488, 2684368, 3211368
Offset: 0

Views

Author

R. H. Hardin, Oct 09 2009

Keywords

Comments

a(n) gives the number of hexagons that have vertices at the lattice points and sides on lattice lines of a triangular lattice with sides n+3. Note that the hexagons can be non-regular. This problem appeared as ConvexHexagons in Single Round Match 455 in TopCoder. - Dmitry Kamenetsky, Dec 17 2009

Crossrefs

Cf. A176646, A011888 (first differences).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( (1-x^3)/((1-x^2)*(1-x)^7) )); // G. C. Greubel, Jul 02 2021
    
  • Mathematica
    LinearRecurrence[{6,-14,14,0,-14,14,-6,1}, {1,7,29,90,232,524,1072,2030}, 51] (* G. C. Greubel, Jul 02 2021 *)
  • PARI
    \\ using Zhu expressions
    f(k) = (8*k^6 + 24*k^5 + 25*k^4 + 10*k^3 - 3*k^2 -4*k)/60;
    g(k) = (8*k^6 - 5*k^4 - 3*k^2)/60;
    a(n) = n+=3; if (n%2, f((n-1)/2), g(n/2)); \\ Michel Marcus, Jul 04 2021
  • Sage
    def a(n): return (n+2)*(n+4)*(2*n^4 +24*n^3 +105*n^2 +198*n +120)/960 if (n%2==0) else (n+1)*(n+3)^2*(n+5)*(2*n*(n+6) +21)/960
    [a(n) for n in (0..50)] # G. C. Greubel, Jul 02 2021
    

Formula

From G. C. Greubel, Jul 02 2021: (Start)
a(n) = (1/1920)*(4*n^6 +72*n^5 +530*n^4 +2040*n^3 +4296*n^2 +4608*n +1905 +15*(-1)^n).
a(2*n+1) = (1/15)*binomial(n+2, 2)*binomial(n+3, 2)*(8*n^2 + 32*n + 35).
a(2*n) = (1/30)*binomial(n+2, 2)*(8*n^4 + 48*n^3 + 105*n^2 + 99*n + 30).
G.f.: (1 - x^3)/((1-x^2)*(1-x)^7).
E.g.f.: (1/1920)*((1905 +2*x*(5775 +7665*x +3690*x^2 +755*x^3 +66*x^4 +2*x^5))*exp(x) + 15*exp(-x)). (End)
a(n) = A001779(n)-A001779(n-3). - R. J. Mathar, Jul 04 2021