cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A176646 a(n) is the number of convex pentagons in an n-triangular net.

Original entry on oeis.org

0, 0, 3, 21, 78, 216, 498, 1014, 1884, 3264, 5349, 8379, 12642, 18480, 26292, 36540, 49752, 66528, 87543, 113553, 145398, 184008, 230406, 285714, 351156, 428064, 517881, 622167, 742602, 880992, 1039272, 1219512, 1423920, 1654848, 1914795, 2206413, 2532510, 2896056
Offset: 1

Views

Author

Jonathan Vos Post, Dec 21 2010

Keywords

Comments

See P(n) in Theorem 2.1, p.2 of Zhu.

Crossrefs

Cf. A166189 (for the hexagons).

Programs

  • Magma
    [(1/320)*(12*n^5 -10*n^4 -60*n^3 +40*n^2 +48*n -15 +15*(-1)^n): n in [1..40]]; // G. C. Greubel, Jul 02 2021
    
  • Maple
    A176646:= n-> (12*n^5 -10*n^4 -60*n^3 +40*n^2 +48*n -15 +15*(-1)^n)/320;
    seq(A176646(n), n=1..40); # R. J. Mathar, Dec 21 2010
  • Mathematica
    LinearRecurrence[{5,-9,5,5,-9,5,-1}, {0,0,3,21,78,216,498}, 40] (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    f(k) = (12*k^5 + 25*k^4 + 5*k^3 - 10*k^2 - 2*k)/10;
    g(k) = (12*k^5 - 5*k^4 - 15*k^3 + 5*k^2 + 3*k)/10;
    a(n) = if (n%2, f((n-1)/2), g(n/2)); \\ Michel Marcus, Jul 04 2021
  • Sage
    [(1/320)*(12*n^5 -10*n^4 -60*n^3 +40*n^2 +48*n -15 +15*(-1)^n) for n in (1..40)] # G. C. Greubel, Jul 02 2021
    

Formula

From G. C. Greubel, Jul 03 2021: (Start)
a(n) = (1/320)*(12*n^5 - 10*n^4 - 60*n^3 + 40*n^2 + 48*n - 15 + 15*(-1)^n).
a(2*n+1) = n*(n+1)*(12*n^3 + 13*n^2 - 8*n - 2)/10.
a(2*n) = n*(4*n-3)*(3*n+1)*(n-1)*(n+1)/10.
G.f.: 3*x^3*(1 + 2*x)/((1 + x)*(1 - x)^6).
E.g.f.: (1/320)*(15*exp(-x) - (15 -30*x +30*x^2 -180*x^3 -110*x^4 -12*x^5)*exp(x)). (End)
a(n) = 3*A001753(n-3) + 6*A001753(n-4). - R. J. Mathar, Jul 04 2021

Extensions

Definition corrected and edited by Michel Marcus and G. C. Greubel, Jul 03 2021
Showing 1-1 of 1 results.