A166225 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 41, 1640, 65600, 2624000, 104960000, 4198400000, 167936000000, 6717440000000, 268697600000000, 10747903999999180, 429916159999934400, 17196646399996064820, 687865855999790145600, 27514634239989507936000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (39, 39, 39, 39, 39, 39, 39, 39, 39, -780).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11), {t,0,30}], t] (* G. C. Greubel, May 07 2016 *) coxG[{10,780,-39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 30 2018 *)
-
Sage
def A166225_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11) ).list() A166225_list(30) # G. C. Greubel, Mar 11 2020
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^10 - 39*t^9 - 39*t^8 - 39*t^7 - 39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1).
Comments