cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166225 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 41, 1640, 65600, 2624000, 104960000, 4198400000, 167936000000, 6717440000000, 268697600000000, 10747903999999180, 429916159999934400, 17196646399996064820, 687865855999790145600, 27514634239989507936000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170760, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11), {t,0,30}], t] (* G. C. Greubel, May 07 2016 *)
    coxG[{10,780,-39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 30 2018 *)
  • Sage
    def A166225_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11) ).list()
    A166225_list(30) # G. C. Greubel, Mar 11 2020

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^10 - 39*t^9 - 39*t^8 - 39*t^7 - 39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1).