A166251 Isolated primes: Primes p such that there is no other prime in the interval [2*prevprime(p/2), 2*nextprime(p/2)].
5, 7, 23, 37, 79, 83, 89, 163, 211, 223, 257, 277, 317, 331, 337, 359, 383, 389, 397, 449, 457, 467, 479, 541, 547, 557, 563, 631, 673, 701, 709, 761, 787, 797, 839, 863, 877, 887, 919, 929, 977, 1129, 1181, 1201, 1213, 1237, 1283, 1307, 1327, 1361, 1399, 1409
Offset: 1
Examples
Since 2*17 < 37 < 2*19, and the interval (34, 38) does not contain other primes, 37 is an isolated prime.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2
Crossrefs
Programs
-
Haskell
a166251 n = a166251_list !! (n-1) a166251_list = concat $ (filter ((== 1) . length)) $ map (filter ((== 1) . a010051)) $ zipWith enumFromTo a100484_list (tail a100484_list) -- Reinhard Zumkeller, Apr 27 2012
-
Mathematica
isolatedQ[p_] := p == NextPrime[2*NextPrime[p/2, -1]] && p == NextPrime[2*NextPrime[p/2], -1]; Select[Prime /@ Range[300], isolatedQ] (* Jean-François Alcover, Nov 29 2012, after M. F. Hasler *)
-
PARI
is_A166251(n)={n==nextprime(2*precprime(n\2)) & n==precprime(2*nextprime(n/2))} \\ M. F. Hasler, Oct 05 2012
Extensions
Edited by N. J. A. Sloane, Oct 15 2009
More terms from Alois P. Heinz, Apr 26 2012
Given terms double-checked with new PARI code by M. F. Hasler, Oct 05 2012
Comments