A166254 Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925220146, 950905221784425600, 40888924536728552592, 1758223755079252588512, 75603621468404628869424
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^10)/(1-43*t+945*t^10-903*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^10)/(1-43*t+945*t^10-903*t^11), {t,0,30}], t] (* G. C. Greubel, May 08 2016 *) coxG[{10,903,-42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 18 2018 *)
-
Sage
def A166254_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^10)/(1-43*t+945*t^10-903*t^11) ).list() A166254_list(30) # G. C. Greubel, Aug 10 2019
Formula
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
Comments