cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A175136 Triangle T(n,k) read by rows: number of LCO forests of size n with k leaves, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 17, 12, 4, 1, 16, 46, 44, 20, 5, 1, 32, 120, 150, 90, 30, 6, 1, 64, 304, 482, 370, 160, 42, 7, 1, 128, 752, 1476, 1412, 770, 259, 56, 8, 1, 256, 1824, 4344, 5068, 3402, 1428, 392, 72, 9, 1, 512, 4352, 12368, 17285, 14000, 7168, 2436
Offset: 1

Views

Author

R. J. Mathar, Feb 21 2010

Keywords

Comments

From Johannes W. Meijer, May 06 2011: (Start)
The Row1, Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Kn3, Kn4 and Ca1 triangle sums link A175136 with several sequences, see the crossrefs. For the definitions of these triangle sums see A180662.
It is remarkable that the coefficients of the right hand columns of A175136, and subsequently those of triangle A175136, can be generated with the aid of the row coefficients of A091894. For the fourth, fifth and sixth right hand columns see A162148, A190048 and A190049. The a(n) formulas of the right hand columns lead to an explicit formula for the T(n,k), see the formulas and the second Maple program. (End)
Triangle T(n,k), 1 <= k <= n, read by rows, given by (0,1,1,0,1,1,0,1,1,0,1,1,0,1,...) DELTA (1,0,0,1,0,0,1,0,0,1,0,0,1,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 29 2011.
T(n,k) is the number of noncrossing partitions of n containing k runs, where a block forms a run if it consists of an interval of integers. For example, T(4,2)=6 counts 1/234, 12/34, 123/4, 1/24/3, 13/2/4, 14/2/3. - David Callan, Oct 14 2012

Examples

			Triangle starts
    1;
    1,    1;
    2,    2,    1;
    4,    6,    3,    1;
    8,   17,   12,    4,    1;
   16,   46,   44,   20,    5,    1;
   32,  120,  150,   90,   30,    6,    1;
   64,  304,  482,  370,  160,   42,    7,    1;
  128,  752, 1476, 1412,  770,  259,   56,    8,    1;
Triangle (0,1,1,0,1,1,0,...) DELTA (1,0,0,1,0,0,1,...) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  2,  1;
  0,  4,  6,  3,  1;
  0,  8, 17, 12,  4,  1; ... - _Philippe Deléham_, Oct 29 2011
		

Crossrefs

Triangle sums (see the comments): A000108 (Row1), A005043 (Related to Kn11, Kn12, Kn13 and Kn4), A007477 (Related to Kn21, Kn22, Kn23 and Kn3), A099251 (Kn4), A166300 (Ca1). - Johannes W. Meijer, May 06 2011
Cf. A000108 (row sums), A196182

Programs

  • Maple
    lco := proc(siz,leav) (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/2/x ; coeftayl(%,x=0,siz ) ; coeftayl(%,y=0,leav ) ; end proc: seq(seq(lco(n,k),k=1..n),n=1..9) ;
    T := proc(n, k): add(A091894(n-k, k1)*binomial(n-k1-1, n-k), k1=0..floor((n-k)/2)) end: A091894 := proc(n, k): if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)* binomial(n-1, 2*k) * binomial(2*k, k)/(k+1) fi end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, May 06 2011, revised Nov 23 2012
  • Mathematica
    A091894[n_, k_] := 2^(n - 2*k - 1)*Binomial[n - 1, 2*k]*(Binomial[2*k, k]/(k + 1)); t[n_, k_] := Sum[A091894[n - k, k1]*Binomial [n - k1 - 1, n - k], {k1, 0, (n - k)/2}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten(* Jean-François Alcover, Jun 13 2013, after Johannes W. Meijer *)

Formula

G.f.: (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/(2*x).
T(n,k) = Sum_{k1=0..floor((n-k)/2)} A091894(n-k, k1)*binomial(n-k1-1, n-k), 1 <= k <= n. - Johannes W. Meijer, May 06 2011

Extensions

Variable names changed by Johannes W. Meijer, May 06 2011

A166299 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having k UUDD's starting at level 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 2, 0, 5, 2, 0, 1, 10, 4, 3, 0, 22, 11, 3, 0, 1, 50, 22, 6, 4, 0, 113, 49, 18, 4, 0, 1, 260, 114, 36, 8, 5, 0, 605, 260, 81, 26, 5, 0, 1, 1418, 604, 193, 52, 10, 6, 0, 3350, 1419, 444, 118, 35, 6, 0, 1, 7967, 3350, 1041, 288, 70, 12, 7, 0, 19055, 7966
Offset: 0

Views

Author

Emeric Deutsch, Nov 07 2009

Keywords

Comments

Sum of entries in row n is the secondary structure number A004148(n-1) (n>=2).
Number of entries in row n is 1 + floor(n/2).
T(n,0)=A166300(n).
Sum(k*T(n,k), k>=0)=A075125(n+2).

Examples

			T(7,2)=3 because we have (UUDD)(UUDD)UUUDDD, (UUDD)UUUDDD(UUDD), and UUUDDD(UUDD)(UUDD) (the UUDD's starting at level 0 are shown between parentheses).
Triangle starts:
1;
0;
0,1;
1,0;
1,0,1;
2,2,0;
5,2,0,1;
10,4,3,0;
		

Crossrefs

Programs

  • Maple
    G := 2/(1+z+z^2+sqrt((1+z+z^2)*(1-3*z+z^2))-2*t*z^2): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.=G(t,z)=1/(1 + z - zg - tz^2), where g=g(z) satisfies g=1 + zg(g - 1 + z).
G.f. of column k is z^{2k}/(1 + z - zg)^{k+1} (k>=0).
G(t,z)=2/[1+z+z^2+sqrt((1+z+z^2)(1-3z+z^2)-2tz^2)].

A247299 Triangle read by rows: T(n,k) is the number of weighted lattice paths B(n) having a total of k h- and H-steps at level 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 3, 1, 2, 4, 3, 3, 4, 1, 5, 6, 9, 5, 6, 5, 1, 10, 15, 15, 16, 9, 10, 6, 1, 22, 33, 33, 32, 26, 16, 15, 7, 1, 50, 71, 78, 66, 60, 41, 27, 21, 8, 1, 113, 163, 171, 158, 125, 103, 64, 43, 28, 9, 1, 260, 374, 391, 360, 295, 225, 167, 99, 65, 36, 10, 1
Offset: 0

Views

Author

Emeric Deutsch, Sep 17 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
Row n contains n+1 entries.
Sum of entries in row n is A004148(n+1) (the 2ndary structure numbers).
T(n,0) = A166300(n).
Sum(k*T(n,k), k=0..n) = A247300(n)

Examples

			Row 3 is 1,0,2,1 because B(3) = {ud, hH, Hh, hhh}.
Triangle starts:
1;
0,1;
0,1,1;
1,0,2,1;
1,2,1,3,1;
2,4,3,3,4,1;
		

Crossrefs

Programs

  • Maple
    eqg := g = 1+z*g+z^2*g+z^3*g^2: g := RootOf(eqg, g): G := 1/(1-t*z-t*z^2-z^3*g): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y) option remember; `if`(y<0 or y>n or n<0, 0,
          `if`(n=0, 1, expand(`if`(y=0, x, 1)*(b(n-1, y)+
          b(n-2, y)) +b(n-2, y+1) +b(n-1, y-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Sep 17 2014
  • Mathematica
    b[n_, y_] := b[n, y] = If[y<0 || y>n || n<0, 0, If[n == 0, 1, Expand[If[y == 0, x, 1]*(b[n-1, y] + b[n-2, y]) + b[n-2, y+1] + b[n-1, y-1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

G.f. G = 1/(1 - t*z - t*z^2 - z^3*g), where g is given by g = 1 + z*g + z^2*g + z^3*g^2.

A188444 Expansion of (1+x)*(1+x+x^2)*(1-x+x^2-4*x+x^4-x^5+x^6)/(1+x^4)^3.

Original entry on oeis.org

1, 1, 1, -3, -9, -9, -6, 10, 25, 25, 15, -21, -49, -49, -28, 36, 81, 81, 45, -55, -121, -121, -66, 78, 169, 169, 91, -105, -225, -225, -120, 136, 289, 289, 153, -171, -361, -361, -190, 210, 441, 441, 231, -253, -529, -529, -276, 300, 625, 625, 325
Offset: 0

Views

Author

Paul Barry, Mar 31 2011

Keywords

Comments

a(n+1) is the Hankel transform of A166300(n+3) (diagonal sums of the triangle A100754).

Formula

G.f.: (1+x+x^2-3*x^3-6*x^4-6*x^5-3*x^6+x^7+x^8+x^9)/(1+x^4)^3.
a(n) = -3*a(n-4) - 3*a(n-8) - a(n-12). - Wesley Ivan Hurt, Mar 17 2023

A350114 Number of Deutsch paths with peaks at odd height.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 6, 11, 26, 56, 129, 294, 684, 1599, 3774, 8961, 21411, 51421, 124081, 300667, 731337, 1785010, 4370431, 10731270, 26419202, 65198847, 161262046, 399692001, 992559011, 2469265633, 6153306125, 15357906136, 38388056063, 96086525311, 240821963528
Offset: 0

Views

Author

David Callan, Dec 14 2021

Keywords

Comments

a(n) is the number of closed Deutsch paths of n steps with all peaks at odd height. A Deutsch path is a lattice path of up-steps (1,1) and down-steps (1,-j), j>=1, starting at the origin that never goes below the x-axis, and it is closed if it ends on the x-axis.
A166300 counts closed Deutsch paths with all peaks at even height.

Examples

			a(5) = 2  counts UUU12, UUU21, where  U denotes an up-step and a down-step is denoted by its length, and a(6) = 6 counts UUUUU5, UUU1U3, UUU111, UUU3U1, U1UUU3, U1U1U1.
		

Crossrefs

Cf. A166300.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x + x^2 - Sqrt[(1 - 3 x + x^2) (1 + x + x^2)])/(2 x + 2 x^2), {x, 0, 20}], x]

Formula

With F = 1 + x^2 + 2*x^4 + 2*x^5+ ... the g.f. for Deutsch paths with all peaks at odd height and G = 1 + x^3 + x^4 + 2*x^5+ ... the g.f. for Deutsch paths with all peaks at even height, a count based on the decomposition of paths according to the size j of the first down-step (1,-j) that returns the path to ground level yields the pair of simultaneous equations
F = 1 + (x^2*F*G + x^3*(F-1)*F*G)/(1 - x^2*F*G),
G = 1 + (x^2*(F-1)*G + x^3*F*G^2)/(1 - x^2*F*G).
G.f.: (1 + x + x^2 - sqrt[(1 - 3*x + x^2)*(1 + x + x^2)])/(2*x*(1 + x)).
D-finite with recurrence (n+1)*a(n) +(-n+2)*a(n-1) +3*(-n+1)*a(n-2) +3*(-n+3)*a(n-3) +(-n+2)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Mar 06 2022
Showing 1-5 of 5 results.