A175136 Triangle T(n,k) read by rows: number of LCO forests of size n with k leaves, 1 <= k <= n.
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 17, 12, 4, 1, 16, 46, 44, 20, 5, 1, 32, 120, 150, 90, 30, 6, 1, 64, 304, 482, 370, 160, 42, 7, 1, 128, 752, 1476, 1412, 770, 259, 56, 8, 1, 256, 1824, 4344, 5068, 3402, 1428, 392, 72, 9, 1, 512, 4352, 12368, 17285, 14000, 7168, 2436
Offset: 1
Examples
Triangle starts 1; 1, 1; 2, 2, 1; 4, 6, 3, 1; 8, 17, 12, 4, 1; 16, 46, 44, 20, 5, 1; 32, 120, 150, 90, 30, 6, 1; 64, 304, 482, 370, 160, 42, 7, 1; 128, 752, 1476, 1412, 770, 259, 56, 8, 1; Triangle (0,1,1,0,1,1,0,...) DELTA (1,0,0,1,0,0,1,...) begins: 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 4, 6, 3, 1; 0, 8, 17, 12, 4, 1; ... - _Philippe Deléham_, Oct 29 2011
Links
- David Callan, A bijection on Dyck paths and its cycle structure, El. J. Combinat. 14 (2007) # R28.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- David Callan and Emeric Deutsch, The Run Transform, arXiv:1112.3639 [math.CO], 2011.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
Crossrefs
Programs
-
Maple
lco := proc(siz,leav) (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/2/x ; coeftayl(%,x=0,siz ) ; coeftayl(%,y=0,leav ) ; end proc: seq(seq(lco(n,k),k=1..n),n=1..9) ; T := proc(n, k): add(A091894(n-k, k1)*binomial(n-k1-1, n-k), k1=0..floor((n-k)/2)) end: A091894 := proc(n, k): if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)* binomial(n-1, 2*k) * binomial(2*k, k)/(k+1) fi end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, May 06 2011, revised Nov 23 2012
-
Mathematica
A091894[n_, k_] := 2^(n - 2*k - 1)*Binomial[n - 1, 2*k]*(Binomial[2*k, k]/(k + 1)); t[n_, k_] := Sum[A091894[n - k, k1]*Binomial [n - k1 - 1, n - k], {k1, 0, (n - k)/2}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten(* Jean-François Alcover, Jun 13 2013, after Johannes W. Meijer *)
Formula
G.f.: (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/(2*x).
T(n,k) = Sum_{k1=0..floor((n-k)/2)} A091894(n-k, k1)*binomial(n-k1-1, n-k), 1 <= k <= n. - Johannes W. Meijer, May 06 2011
Extensions
Variable names changed by Johannes W. Meijer, May 06 2011
Comments