A166343 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4, read by rows.
1, 1, 1, 1, 12, 1, 1, 27, 27, 1, 1, 58, 162, 58, 1, 1, 121, 718, 718, 121, 1, 1, 248, 2759, 5744, 2759, 248, 1, 1, 503, 9765, 36771, 36771, 9765, 503, 1, 1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1, 1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 12, 1; 1, 27, 27, 1; 1, 58, 162, 58, 1; 1, 121, 718, 718, 121, 1; 1, 248, 2759, 5744, 2759, 248, 1; 1, 503, 9765, 36771, 36771, 9765, 503, 1; 1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1; 1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1;
References
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
(* First program *) p[x_, 1]:= x/(1-x)^2; p[x_, 2]:= x*(1+x)/(1-x)^3; p[x_, 3]:= x*(1+12*x+x^2)/(1-x)^4; p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x] Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten (* Second program *) b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]]; t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}]; T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]]; Table[T[n,k,4], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
-
Sage
def b(n,k,m): if (n<2): return 1 elif (k==0): return 0 else: return k^(n-1)*((m+3)*k^2 - m)/3 @CachedFunction def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) ) def A166343(n,k): return 1 if (k==1) else t(n-1,k,4) - t(n-1,k-1,4) flatten([[A166343(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
Formula
T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4.
From G. C. Greubel, Mar 11 2022: (Start)
T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A063521(k), b(n, 0) = 1, and b(1, k) = 1.
T(n, n-k) = T(n, k). (End)
Extensions
Edited by G. C. Greubel, Mar 11 2022