cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166346 Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 8*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 158, 482, 158, 1, 1, 605, 4194, 4194, 605, 1, 1, 2276, 31047, 67752, 31047, 2276, 1, 1, 8515, 210609, 856075, 856075, 210609, 8515, 1, 1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1, 1, 118713
Offset: 1

Views

Author

Roger L. Bagula, Oct 12 2009

Keywords

Examples

			{1},
{1, 1},
{1, 8, 1},
{1, 39, 39, 1},
{1, 158, 482, 158, 1},
{1, 605, 4194, 4194, 605, 1},
{1, 2276, 31047, 67752, 31047, 2276, 1},
{1, 8515, 210609, 856075, 856075, 210609, 8515, 1},
{1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1},
{1, 118713, 8453460, 93489572, 285010254, 285010254, 93489572, 8453460, 118713, 1},
{1, 443072, 51564829, 876484896, 4159141218, 6855899968, 4159141218, 876484896, 51564829, 443072, 1}
		

References

  • Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91.

Crossrefs

Programs

  • Mathematica
    p[x_, 0] := 1/(1 - x);
    p[x_, 1] := x/(1 - x)^2;
    p[x_, 2] := x*(1 + x)/(1 - x)^3;
    p[x_, 3] := x*(x^2 + 8*x + 1)/(1 - x)^4;
    p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2]
    a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}];
    Flatten[a]
    Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}];

Formula

p(x,0)= 1/(1 - x);
p(x,1)= x/(1 - x)^2;
p(x,2)= x*(1 + x)/(1 - x)^3;
p(x,3)= x*(x^2 +8*x + 1)/(1 - x)^4;
p(x,n)= 2*x*D[p[x, n - 1], x] - p[x, n - 2]