A166343
Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 27, 27, 1, 1, 58, 162, 58, 1, 1, 121, 718, 718, 121, 1, 1, 248, 2759, 5744, 2759, 248, 1, 1, 503, 9765, 36771, 36771, 9765, 503, 1, 1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1, 1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 27, 27, 1;
1, 58, 162, 58, 1;
1, 121, 718, 718, 121, 1;
1, 248, 2759, 5744, 2759, 248, 1;
1, 503, 9765, 36771, 36771, 9765, 503, 1;
1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1;
1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1;
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
-
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+12*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
Table[T[n,k,4], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
-
def b(n,k,m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
def A166343(n,k): return 1 if (k==1) else t(n-1,k,4) - t(n-1,k-1,4)
flatten([[A166343(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
A166340
Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+8*x+x^2)/(1-x)^4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 19, 19, 1, 1, 42, 114, 42, 1, 1, 89, 510, 510, 89, 1, 1, 184, 1975, 4080, 1975, 184, 1, 1, 375, 7029, 26195, 26195, 7029, 375, 1, 1, 758, 23712, 146954, 261950, 146954, 23712, 758, 1, 1, 1525, 77200, 753800, 2191474, 2191474, 753800, 77200, 1525, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 19, 19, 1;
1, 42, 114, 42, 1;
1, 89, 510, 510, 89, 1;
1, 184, 1975, 4080, 1975, 184, 1;
1, 375, 7029, 26195, 26195, 7029, 375, 1;
1, 758, 23712, 146954, 261950, 146954, 23712, 758, 1;
1, 1525, 77200, 753800, 2191474, 2191474, 753800, 77200, 1525, 1;
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
-
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+8*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n, k]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
T[n_, k_, m_]:= T[n, k, m]= If[k==1, 1, t[n-1, k, m] - t[n-1, k-1, m]];
Table[T[n, k, 2], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
-
def b(n,k,m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
def A166340(n,k): return 1 if (k==1) else t(n-1,k,2) - t(n-1,k-1,2)
flatten([[A166340(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
A166341
Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+10*x+x^2)/(1-x)^4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 23, 23, 1, 1, 50, 138, 50, 1, 1, 105, 614, 614, 105, 1, 1, 216, 2367, 4912, 2367, 216, 1, 1, 439, 8397, 31483, 31483, 8397, 439, 1, 1, 886, 28264, 176314, 314830, 176314, 28264, 886, 1, 1, 1781, 91880, 903104, 2632034, 2632034, 903104, 91880, 1781, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 23, 23, 1;
1, 50, 138, 50, 1;
1, 105, 614, 614, 105, 1;
1, 216, 2367, 4912, 2367, 216, 1;
1, 439, 8397, 31483, 31483, 8397, 439, 1;
1, 886, 28264, 176314, 314830, 176314, 28264, 886, 1;
1, 1781, 91880, 903104, 2632034, 2632034, 903104, 91880, 1781, 1;
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
-
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+10*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
Table[T[n,k,3], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
-
def b(n,k,m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
def A166341(n,k): return 1 if (k==1) else t(n-1,k,3) - t(n-1,k-1,3)
flatten([[A166341(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
A166344
Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+6*x+x^2)/(1-x)^4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 34, 90, 34, 1, 1, 73, 406, 406, 73, 1, 1, 152, 1583, 3248, 1583, 152, 1, 1, 311, 5661, 20907, 20907, 5661, 311, 1, 1, 630, 19160, 117594, 209070, 117594, 19160, 630, 1, 1, 1269, 62520, 604496, 1750914, 1750914, 604496, 62520, 1269, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 15, 15, 1;
1, 34, 90, 34, 1;
1, 73, 406, 406, 73, 1;
1, 152, 1583, 3248, 1583, 152, 1;
1, 311, 5661, 20907, 20907, 5661, 311, 1;
1, 630, 19160, 117594, 209070, 117594, 19160, 630, 1;
1, 1269, 62520, 604496, 1750914, 1750914, 604496, 62520, 1269, 1;
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
-
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+6*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
Table[T[n,k,1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
-
def b(n,k,m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
def A166344(n,k): return 1 if (k==1) else t(n-1,k,1) - t(n-1,k-1,1)
flatten([[A166344(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
A166345
Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+2*x+x^2)/(1-x)^4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 18, 42, 18, 1, 1, 41, 198, 198, 41, 1, 1, 88, 799, 1584, 799, 88, 1, 1, 183, 2925, 10331, 10331, 2925, 183, 1, 1, 374, 10056, 58874, 103310, 58874, 10056, 374, 1, 1, 757, 33160, 305888, 869794, 869794, 305888, 33160, 757, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 7, 7, 1;
1, 18, 42, 18, 1;
1, 41, 198, 198, 41, 1;
1, 88, 799, 1584, 799, 88, 1;
1, 183, 2925, 10331, 10331, 2925, 183, 1;
1, 374, 10056, 58874, 103310, 58874, 10056, 374, 1;
1, 757, 33160, 305888, 869794, 869794, 305888, 33160, 757, 1;
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
-
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+10*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
Table[T[n,k,-1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
-
def b(n,k,m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
def A166345(n,k): return 1 if (k==1) else t(n-1,k,-1) - t(n-1,k-1,-1)
flatten([[A166345(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
Showing 1-5 of 5 results.