A166364 Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593735, 292968600, 1464842640, 7324211400, 36621048000, 183105195000, 915525750000, 4577627625000, 22888132500000, 114440634375000, 572203031250000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,4,4,4,4,4,4,4,4,4,-10).
Programs
-
Maple
seq(coeff(series((1+t)*(1-t^11)/(1-5*t+14*t^11-10*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 13 2020
-
Mathematica
CoefficientList[Series[(1+t)*(1-t^11)/(1-5*t+14*t^11-10*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *) coxG[{11,10,-4,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 13 2016 *)
-
Sage
def A166364_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+t)*(1-t^11)/(1-5*t+14*t^11-10*t^12) ).list() A166364_list(30) # G. C. Greubel, Mar 13 2020
Formula
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).
Comments