A384303 a(n) = Product_{k=0..2*n-1} (3*n+k+1).
1, 20, 5040, 3603600, 5079110400, 11861676288000, 41430393164160000, 202250096145377280000, 1315041316842168115200000, 10985733772470225465016320000, 114660755112113373922453094400000, 1462160421974232524852811030528000000, 22368646191981329482560015901851648000000
Offset: 0
Programs
-
PARI
a(n) = (5*n)!/(3*n)!;
Formula
a(n) = RisingFactorial(3*n+1,2*n).
a(n) = (2*n)! * [x^(2*n)] 1/(1 - x)^(3*n+1).
a(n) = (5*n)!/(3*n)!.
D-finite with recurrence 3*(3*n-1)*(3*n-2)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, May 26 2025