A166410 Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406249880, 138396093746400, 2075941406169120, 31139121092133600, 467086816375956000, 7006302245548620000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (14,14,14,14,14,14,14,14,14,14,-105).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^11)/(1-15*x+119*x^11-105*x^12) )); // G. C. Greubel, Jul 23 2024 -
Mathematica
With[{p=105, q=14}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 12 2016; Jul 23 2024 *) coxG[{11,105,-14}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 24 2021 *)
-
SageMath
def A166410_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^11)/(1-15*x+119*x^11-105*x^12) ).list() A166410_list(30) # G. C. Greubel, Jul 23 2024
Formula
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^11 - 14*t^10 - 14*t^9 - 14*t^8 - 14*t^7 - 14*t^6 - 14*t^5 - 14*t^4 - 14*t^3 - 14*t^2 - 14*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 14*Sum_{j=1..10} a(n-j) - 105*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 15*x + 119*x^11 - 105*x^12). (End)
Comments