cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166413 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305685, 1221099791499252, 21979796246931303, 395636332443769260, 7121453983969951188
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170738, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    Coefficients(R!( (1+x)*(1-x^11)/(1-18*x+170*x^11-153*x^12) )); // G. C. Greubel, Jul 23 2024
    
  • Mathematica
    With[{p=153, q=17}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 12 2016; Jul 23 2024 *)
    coxG[{11,153,-17}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 26 2022 *)
  • SageMath
    def A166413_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^11)/(1-18*x+170*x^11-153*x^12) ).list()
    A166413_list(30) # G. C. Greubel, Jul 23 2024

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 17*Sum_{j=1..10} a(n-j) - 153*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 18*x + 170*x^11 - 153*x^12). (End)