A166421 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582640801, 99099301148651700, 2576581829864707275, 66991127576476229100, 1741769316988221795300
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (25,25,25,25,25,25,25,25,25,25,-325).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^11)/(1-26*x+350*x^11-325*x^12) )); // G. C. Greubel, Jul 25 2024 -
Mathematica
With[{p=325, q=25}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 13 2016; Jul 25 2024 *) coxG[{11,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 22 2021 *)
-
SageMath
def A166421_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^11)/(1-26*x+350*x^11-325*x^12) ).list() A166421_list(30) # G. C. Greubel, Jul 25 2024
Formula
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
From G. C. Greubel, Jan 17 2023: (Start)
a(n) = 25*Sum_{j=1..10} a(n-j) - 325*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 26*x + 350*x^11 - 325*x^12). (End)
Comments