A166426 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385136, 813071260684923840, 25205209081232162880, 781361481518182288320, 24222205927063193348160
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (30,30,30,30,30,30,30,30,30,30,-465).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^11)/(1-31*x+495*x^11-465*x^12) )); // G. C. Greubel, Jul 25 2024 -
Mathematica
coxG[{11,465,-30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 06 2015 *) With[{p=465, q=30}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 13 2016; Jul 25 2024 *)
-
SageMath
def A166426_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)*(1-x^11)/(1-31*x+495*x^11-465*x^12) ).list() A166426_list(30) # G. C. Greubel, Jul 25 2024
Formula
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^11 - 30*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).
From G. C. Greubel, Jul 25 2024: (Start)
a(n) = 30*Sum_{j=1..10} a(n-j) - 465*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 31*x + 495*x^11 - 465*x^12). (End)
Comments