cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166438 Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506010, 40888924536733717752, 1758223755079548115128, 75603621468420493777560
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30);
    f:= func< p,q,x | (1+x)*(1-x^11)/(1-(q+1)*x+(p+q)*x^11-p*x^12) >;
    Coefficients(R!( f(903,42,x) )); // G. C. Greubel, Jul 26 2024
    
  • Mathematica
    With[{p=903, q=42}, CoefficientList[Series[(1+t)*(1-t^11)/(1 - (q+1)*t + (p+q)*t^11 - p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 14 2016; Jul 26 2024 *)
    coxG[{11,903,-42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 01 2022 *)
  • SageMath
    def f(p,q,x): return (1+x)*(1-x^11)/(1-(q+1)*x+(p+q)*x^11-p*x^12)
    def A166438_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(903,42,x) ).list()
    A166438_list(30) # G. C. Greubel, Jul 26 2024

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^11 - 42*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
From G. C. Greubel, Jul 26 2024: (Start)
a(n) = 42*Sum_{j=1..10} a(n-j) - 903*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 43*x + 945*x^11 - 903*x^12). (End)