A166441 Number of reduced words of length n in Coxeter group on 47 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1, 47, 2162, 99452, 4574792, 210440432, 9680259872, 445291954112, 20483429889152, 942237774900992, 43342937645445632, 1993775131690497991, 91713656057762857860, 4218828178657089175245, 194066096218225996890780
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (45,45,45,45,45,45,45,45,45,45,-1035).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 30); f:= func< p,q,x | (1+x)*(1-x^11)/(1-(q+1)*x+(p+q)*x^11-p*x^12) >; Coefficients(R!( f(1035,45,x) )); // G. C. Greubel, Jul 26 2024 -
Mathematica
coxG[{11,1035,-45}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 16 2015 *) With[{p=1035, q=45}, CoefficientList[Series[(1+t)*(1-t^11)/(1 - (q+1)*t + (p+q)*t^11 - p*t^12), {t,0,40}], t]] (* G. C. Greubel, May 14 2016; Jul 26 2024 *)
-
SageMath
def f(p,q,x): return (1+x)*(1-x^11)/(1-(q+1)*x+(p+q)*x^11-p*x^12) def A166441_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( f(1035,45,x) ).list() A166441_list(30) # G. C. Greubel, Jul 26 2024
Formula
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1035*t^11 - 45*t^10 - 45*t^9 - 45*t^8 - 45*t^7 - 45*t^6 - 45*t^5 - 45*t^4 - 45*t^3 - 45*t^2 - 45*t + 1).
From G. C. Greubel, Jul 26 2024: (Start)
a(n) = 45*Sum_{j=1..10} a(n-j) - 1035*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 46*x + 1080*x^11 - 1035*x^12). (End)
Comments