A166473 a(n) = 2^L(n+1) * 3^L(n)/12, where L(n) is the n-th Lucas number (A000032(n)).
2, 36, 864, 373248, 3869835264, 17332899271409664, 804905577934332296851095552, 167416167663978753511691999938432197602574336
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..14
Programs
-
GAP
List([1..10], n-> 2^(Lucas(1,-1,n+1)[2]-2)*3^(Lucas(1,-1,n)[2]-1)); # G. C. Greubel, Jul 22 2019
-
Magma
[2^(Lucas(n+1)-2)*3^(Lucas(n)-1): n in [1..10]]; // G. C. Greubel, Jul 22 2019
-
Mathematica
Table[(2^LucasL[n+1] 3^LucasL[n])/12,{n,10}] (* Harvey P. Dale, Aug 17 2011 *)
-
PARI
lucas(n) = fibonacci(n+1) + fibonacci(n-1); vector(10, n, 2^(lucas(n+1)-2)*3^(lucas(n)-1) ) \\ G. C. Greubel, Jul 22 2019
-
Sage
[2^(lucas_number2(n+1,1,-1)-2)*3^(lucas_number2(n,1,-1)-1) for n in (1..10)] # G. C. Greubel, Jul 22 2019
Formula
a(n) = A166471(n)/12.
For n>1, a(n) = 12*a(n-1) * a(n-2).
Comments