cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166516 A product of consecutive doubled Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 65, 169, 442, 1156, 3026, 7921, 20737, 54289, 142130, 372100, 974170, 2550409, 6677057, 17480761, 45765226, 119814916, 313679522, 821223649, 2149991425, 5628750625, 14736260450, 38580030724, 101003831722
Offset: 0

Views

Author

Paul Barry, Oct 16 2009

Keywords

Crossrefs

Cf. A000045, A001654 (first differences), A166514.

Programs

  • Magma
    A166516:= func< n | (n mod 2)*Fibonacci(n)^2 +((n+1) mod 2)*Fibonacci(n-1)*Fibonacci(n+1) >;
    [A166516(n): n in [0..40]]; // G. C. Greubel, Aug 03 2024
    
  • Mathematica
    CoefficientList[Series[(1-2x-x^2+x^3)/((1-x)(1+x)(1-3x+x^2)),{x,0,30}], x] (* or *) LinearRecurrence[{3,0,-3,1},{1,1,2,4},30] (* Harvey P. Dale, Dec 26 2013 *)
  • SageMath
    f=fibonacci
    def A166516(n): return (n%2)*f(n)^2 +((n+1)%2)*f(n-1)*f(n+1)
    [A166516(n) for n in range(41)] # G. C. Greubel, Aug 03 2024

Formula

G.f.: (1-2*x-x^2+x^3) / ( (1-x)*(1+x)*(1-3*x+x^2) ).
a(n) = Fibonacci(2*floor(n/2) + 1)*Fibonacci(2*floor((n-1)/2) + 1).
a(n) = Fibonacci(A166514(2*n))^2 + Fibonacci(A166514(2*n+1))^2.
a(n) = Fibonacci(n)^2 * (1-(-1)^n)/2 + Fibonacci(n-1)*Fibonacci(n+1) * (1+(-1)^n)/2.
a(n+1)*a(n+3) - a(n+2)^2 = Fibonacci(n+2)^2 * (1-(-1)^n)/2.
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - G. C. Greubel, May 15 2016