A166516 A product of consecutive doubled Fibonacci numbers.
1, 1, 2, 4, 10, 25, 65, 169, 442, 1156, 3026, 7921, 20737, 54289, 142130, 372100, 974170, 2550409, 6677057, 17480761, 45765226, 119814916, 313679522, 821223649, 2149991425, 5628750625, 14736260450, 38580030724, 101003831722
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,0,-3,1).
Programs
-
Magma
A166516:= func< n | (n mod 2)*Fibonacci(n)^2 +((n+1) mod 2)*Fibonacci(n-1)*Fibonacci(n+1) >; [A166516(n): n in [0..40]]; // G. C. Greubel, Aug 03 2024
-
Mathematica
CoefficientList[Series[(1-2x-x^2+x^3)/((1-x)(1+x)(1-3x+x^2)),{x,0,30}], x] (* or *) LinearRecurrence[{3,0,-3,1},{1,1,2,4},30] (* Harvey P. Dale, Dec 26 2013 *)
-
SageMath
f=fibonacci def A166516(n): return (n%2)*f(n)^2 +((n+1)%2)*f(n-1)*f(n+1) [A166516(n) for n in range(41)] # G. C. Greubel, Aug 03 2024
Formula
G.f.: (1-2*x-x^2+x^3) / ( (1-x)*(1+x)*(1-3*x+x^2) ).
a(n) = Fibonacci(2*floor(n/2) + 1)*Fibonacci(2*floor((n-1)/2) + 1).
a(n) = Fibonacci(n)^2 * (1-(-1)^n)/2 + Fibonacci(n-1)*Fibonacci(n+1) * (1+(-1)^n)/2.
a(n+1)*a(n+3) - a(n+2)^2 = Fibonacci(n+2)^2 * (1-(-1)^n)/2.
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - G. C. Greubel, May 15 2016