cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A192232 Constant term of the reduction of n-th Fibonacci polynomial by x^2 -> x+1. (See Comments.)

Original entry on oeis.org

1, 0, 2, 1, 6, 7, 22, 36, 89, 168, 377, 756, 1630, 3353, 7110, 14783, 31130, 65016, 136513, 285648, 599041, 1254456, 2629418, 5508097, 11542854, 24183271, 50674318, 106173180, 222470009, 466131960, 976694489, 2046447180, 4287928678, 8984443769, 18825088134
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

Polynomial reduction: an introduction
...
We begin with an example. Suppose that p(x) is a polynomial, so that p(x)=(x^2)t(x)+r(x) for some polynomials t(x) and r(x), where r(x) has degree 0 or 1. Replace x^2 by x+1 to get (x+1)t(x)+r(x), which is (x^2)u(x)+v(x) for some u(x) and v(x), where v(x) has degree 0 or 1. Continuing in this manner results in a fixed polynomial w(x) of degree 0 or 1. If p(x)=x^n, then w(x)=x*F(n)+F(n-1), where F=A000045, the sequence of Fibonacci numbers.
In order to generalize, write d(g) for the degree of an arbitrary polynomial g(x), and suppose that p, q, s are polynomials satisfying d(s)s in this manner until reaching w such that d(w)s.
The coefficients of (reduction of p by q->s) comprise a vector of length d(q)-1, so that a sequence p(n,x) of polynomials begets a sequence of vectors, such as (F(n), F(n-1)) in the above example. We are interested in the component sequences (e.g., F(n-1) and F(n)) for various choices of p(n,x).
Following are examples of reduction by x^2->x+1:
n-th Fibonacci p(x) -> A192232+x*A112576
n-th cyclotomic p(x) -> A192233+x*A051258
n-th 1st-kind Chebyshev p(x) -> A192234+x*A071101
n-th 2nd-kind Chebyshev p(x) -> A192235+x*A192236
x(x+1)(x+2)...(x+n-1) -> A192238+x*A192239
(x+1)^n -> A001519+x*A001906
(x^2+x+1)^n -> A154626+x*A087635
(x+2)^n -> A020876+x*A030191
(x+3)^n -> A192240+x*A099453
...
Suppose that b=(b(0), b(1),...) is a sequence, and let p(n,x)=b(0)+b(1)x+b(2)x^2+...+b(n)x^n. We define (reduction of sequence b by q->s) to be the vector given by (reduction of p(n,x) by q->s), with components in the order of powers, from 0 up to d(q)-1. For k=0,1,...,d(q)-1, we then have the "k-sequence of (reduction of sequence b by q->s)". Continuing the example, if b is the sequence given by b(k)=1 if k=n and b(k)=0 otherwise, then the 0-sequence of (reduction of b by x^2->x+1) is (F(n-1)), and the 1-sequence is (F(n)).
...
For selected sequences b, here are the 0-sequences and 1-sequences of (reduction of b by x^2->x+1):
b=A000045, Fibonacci sequence (1,1,2,3,5,8,...) yields
0-sequence A166536 and 1-sequence A064831.
b=(1,A000045)=(1,1,1,2,3,5,8,...) yields
0-sequence A166516 and 1-sequence A001654.
b=A000027, natural number sequence (1,2,3,4,...) yields
0-sequence A190062 and 1-sequence A122491.
b=A000032, Lucas sequence (1,3,4,7,11,...) yields
0-sequence A192243 and 1-sequence A192068.
b=A000217, triangular sequence (1,3,6,10,...) yields
0-sequence A192244 and 1-sequence A192245.
b=A000290, squares sequence (1,4,9,16,...) yields
0-sequence A192254 and 1-sequence A192255.
More examples: A192245-A192257.
...
More comments:
(1) If s(n,x)=(reduction of x^n by q->s) and
p(x)=p(0)x^n+p(1)x^(n-1)+...+p(n)x^0, then
(reduction of p by q->s)=p(0)s(n,x)+p(1)s(n-1,x)
+...+p(n-1)s(1,x)+p(n)s(0,x). See A192744.
(2) For any polynomial p(x), let P(x)=(reduction of p(x)
by q->s). Then P(r)=p(r) for each zero r of
q(x)-s(x). In particular, if q(x)=x^2 and s(x)=x+1,
then P(r)=p(r) if r=(1+sqrt(5))/2 (golden ratio) or
r=(1-sqrt(5))/2.

Examples

			The first four Fibonacci polynomials and their reductions by x^2->x+1 are shown here:
F1(x)=1 -> 1 + 0x
F2(x)=x -> 0 + 1x
F3(x)=x^2+1 -> 2+1x
F4(x)=x^3+2x -> 1+4x
F5(x)=x^4+3x^2+1 -> (x+1)^2+3(x+1)+1 -> 6+6x.
From these, read A192232=(1,0,1,1,6,...) and A112576=(0,1,1,4,6,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),  x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, Fibonacci[n, x]], {n, 1, 40}];
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]
      (* A192232 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]
    (* A112576 *)
    (* Peter J. C. Moses, Jun 25 2011 *)
    LinearRecurrence[{1, 3, -1, -1}, {1, 0, 2, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    Vec((1-x-x^2)/(1-x-3*x^2+x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 08 2013

Formula

Empirical G.f.: -x*(x^2+x-1)/(x^4+x^3-3*x^2-x+1). - Colin Barker, Sep 11 2012
The above formula is correct. - Charles R Greathouse IV, Jan 08 2013
a(n) = A265752(A206296(n)). - Antti Karttunen, Dec 15 2015
a(n) = A112576(n) -A112576(n-1) -A112576(n-2). - R. J. Mathar, Dec 16 2015

Extensions

Example corrected by Clark Kimberling, Dec 18 2017

A264272 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 1,0 or 1,2.

Original entry on oeis.org

4, 10, 9, 25, 48, 25, 65, 256, 305, 64, 169, 1280, 3721, 1800, 169, 442, 6400, 40626, 50625, 10933, 441, 1156, 32000, 443556, 1143000, 707281, 65856, 1156, 3026, 160000, 4861800, 25806400, 33729146, 9834496, 397970, 3025, 7921, 800000, 53290000
Offset: 1

Views

Author

R. H. Hardin, Nov 10 2015

Keywords

Comments

Table starts
....4......10.........25...........65.............169................442
....9......48........256.........1280............6400..............32000
...25.....305.......3721........40626..........443556............4861800
...64....1800......50625......1143000........25806400..........600090240
..169...10933.....707281.....33729146......1608491236........80568542340
..441...65856....9834496....981994496.....98054154496.....10563801093680
.1156..397970..137007025..28735927165...6027088830169...1398071103483637
.3025.2402455.1908029761.839596650695.369450492999025.184549492112860840

Examples

			Some solutions for n=3 k=4
..5..8..7..3..4....5..1..9..3..4....0..8..2..3..4....0..8..2..3..9
..0..6..2..1.14....0.11..2..8.14....5.13.14..1..9....5..1.12.13..4
.10.18.19.13..9...10.18..7..6.19...15.16.12..6..7...15.16..7..6.19
.15.16.17.11.12...15.16.17.13.12...10.11.17.18.19...10.11.17.18.14
		

Crossrefs

Column 1 is A007598(n+2).
Row 1 is A166516(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=2: [order 8]
k=3: a(n) = 14*a(n-1) +14*a(n-2) -210*a(n-3) +210*a(n-5) -14*a(n-6) -14*a(n-7) +a(n-8)
k=4: [order 52]
k=5: [order 96]
Empirical for row n:
n=1: a(n) = 3*a(n-1) -3*a(n-3) +a(n-4)
n=2: a(n) = 5*a(n-1) for n>3
n=3: [order 22]
n=4: [order 25] for n>27

A166536 A product of consecutive doubled Fibonacci numbers.

Original entry on oeis.org

1, 3, 6, 16, 40, 105, 273, 715, 1870, 4896, 12816, 33553, 87841, 229971, 602070, 1576240, 4126648, 10803705, 28284465, 74049691, 193864606, 507544128, 1328767776, 3478759201, 9107509825, 23843770275, 62423800998, 163427632720
Offset: 0

Views

Author

Paul Barry, Oct 16 2009

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,3,6,16];; for n in [5..30] do a[n]:=3*a[n-1]-3*a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 09 2019
  • Magma
    /* From the sixth formula: */ F:=Fibonacci; [&+[F(i+1)*F(i-1): i in [0..n+1]]: n in [0..30]]; // Bruno Berselli, Feb 15 2017
    
  • Mathematica
    LinearRecurrence[{3, 0, -3, 1}, {1, 3, 6, 16}, 30] (* G. C. Greubel, May 16 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x^2+x^3)/(1-3*x+3*x^3-x^4)) \\ G. C. Greubel, Jan 09 2019
    
  • Sage
    ((1-3*x^2+x^3)/(1-3*x+3*x^3-x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 09 2019
    

Formula

G.f.: (1 - 3*x^2 + x^3)/(1 - 3*x + 3*x^3 - x^4).
a(n) = F(n+1)*F(n+2) + (1 - (-1)^n)/2, where F = A000045.
a(n) = (F(n+2)*(1 + (-1)^n)/2 + F(n)*(1 - (-1)^n)/2)*(F(n+3)*(1 - (-1)^n)/2 + F(n+1)*(1 + (-1)^n)/2).
a(n)*a(n+2) - a(n+1)^2 = (-1)^n*(F(2*n+4) - 1).
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - G. C. Greubel, May 16 2016
a(n) = Sum_{i=0..n+1} F(i+1)*F(i-1), where F(-1) = 1. - Bruno Berselli, Feb 16 2017

A203906 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of A203905.

Original entry on oeis.org

1, -1, 1, -2, 1, 1, -4, 4, -1, 1, -6, 11, -6, 1, 1, -8, 22, -24, 9, -1, 1, -10, 37, -62, 46, -12, 1, 1, -12, 56, -128, 148, -80, 16, -1, 1, -14, 79, -230, 367, -314, 130, -20, 1, 1, -16, 106, -376, 771, -920, 610, -200, 25, -1, 1, -18, 137
Offset: 1

Views

Author

Clark Kimberling, Jan 08 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1). See A202605 for a guide to related sequences.
If we omit the main diagonal of this array and ignore the signs of the entries then the resulting array, reading the rows in reverse order, appears to equal the Riordan array (1/((1 + x)*(1 - x)^3), x/(1 - x)^2), whose generating function begins 1 + (2 + t)*x + (4 + 4*t + t^2)*x^2 + (6 + 11*t + 6*t^2 + t^3)*x^3 + (9 + 24*t + 22*t^2 + 8*t^3 + t^4)*x^4 + .... - Peter Bala, Sep 17 2019

Examples

			Top of the array:
1...-1
1...-2....1
1...-4....4...-1
1...-6...11...-6....1
1...-8...22...-24...9...-1
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    t = {1, 0}; t1 = Flatten[{t, t, t, t, t, t, t, t, t, t}];
    f[k_] := t1[[k]];
    U[n_] := NestList[Most[Prepend[#, 0]] &, #,
    Length[#] - 1] &[Table[f[k], {k, 1, n}]];
    L[n_] := Transpose[U[n]];
    p[n_] := CharacteristicPolynomial[L[n].U[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                         (* A203906 *)
    TableForm[Table[c[n], {n, 1, 10}]]
    Table[p[n] /. x -> -1, {n, 1, 16}] (* A166516 *)

A262342 Area of Lewis Carroll's paradoxical F(2n+1) X F(2n+3) rectangle.

Original entry on oeis.org

10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290, 3372041405099481410
Offset: 1

Views

Author

Jonathan Sondow, Oct 16 2015

Keywords

Comments

Warren Weaver (1938): "In a familiar geometrical paradox a square of area 8 X 8 = 64 square units is cut into four parts which may be refitted to form a rectangle of apparent area 5 X 13 = 65 square units.... Lewis Carroll generalized this paradox...."
Carroll cuts a F(2n+2) X F(2n+2) square into four parts, where F(n) is the n-th Fibonacci number. Two parts are right triangles with legs F(2n) and F(2n+2); two are right trapezoids three of whose sides are F(2n), F(2n+1), and F(2n+1). (Thus n > 0.) The paradox (or dissection fallacy) depends on Cassini's identity F(2n+1) * F(2n+3) = F(2n+2)^2 + 1.
For an extension of the paradox to a F(2n+1) X F(2n+1) square using Cassini's identity F(2n) * F(2n+2) = F(2n+1)^2 - 1, see Dudeney (1970), Gardner (1956), Horadam (1962), Knott (2014), Kumar (1964), and Sillke (2004). Sillke also has many additional references and links.

Examples

			F(3) * F(5) = 2 * 5 = 10 = 3^2 + 1 = F(4)^2 + 1, so a(1) = 10.
G.f. = 10*x + 65*x^2 + 442*x^3 + 3026*x^4 + 20737*x^5 + 142130*x^6 + 974170*x^7 + ...
		

References

  • W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th edition, Dover, 1987, p. 85.
  • Henry E. Dudeney, 536 Puzzles and Curious Problems, Scribner, reprinted 1970, Problems 352-353 and their answers.
  • Martin Gardner, Mathematics, Magic and Mystery, Dover, 1956, Chap. 8.
  • Edward Wakeling, Rediscovered Lewis Carroll Puzzles, Dover, 1995, p. 12.
  • David Wells, The Penguin Book of Curious and Interesting Puzzles, Penguin, 1997, Puzzle 143.

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n+1)*Fibonacci(2*n+3) : n in [1..30]]; // Wesley Ivan Hurt, Oct 16 2015
    
  • Maple
    with(combinat): A262342:=n->fibonacci(2*n+1)*fibonacci(2*n+3): seq(A262342(n), n=1..30); # Wesley Ivan Hurt, Oct 16 2015
  • Mathematica
    Table[Fibonacci[2 n + 1] Fibonacci[2 n + 3], {n, 22}]
    LinearRecurrence[{8,-8,1},{10,65,442},30] (* Harvey P. Dale, Aug 06 2024 *)
  • PARI
    Vec(-x*(2*x^2-15*x+10)/((x-1)*(x^2-7*x+1)) + O(x^30)) \\ Colin Barker, Oct 17 2015
    
  • PARI
    a(n) = fibonacci(2*n+1) * fibonacci(2*n+3) \\ Altug Alkan, Oct 17 2015

Formula

a(n) = Fibonacci(2n+1) * Fibonacci(2n+3) = Fibonacci(2n+2)^2 + 1 for n > 0.
From Colin Barker, Oct 17 2015: (Start)
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: -x*(2*x^2-15*x+10) / ((x-1)*(x^2-7*x+1)).
(End)
a(3*k-2) mod 2 = 0; a(3*k-1) mod 2 = 1; a(3*k) mod 2 = 0, k > 0. - Altug Alkan, Oct 17 2015
a(n) = A059929(2*n+1) = A070550(4*n+1) = A166516(2*n+2) = A190018(8*n) = A236165(4*n+4) = A245306(2*n+2). - Bruno Berselli, Oct 17 2015
a(n) = A064170(n+3). - Alois P. Heinz, Oct 17 2015
E.g.f.: (1/5)*((1/phi*r)*exp(b*x) + (phi^4/r)*exp(a*x) + 3*exp(x) - 10), where r = 2*phi+1, 2*a=7+3*sqrt(5), 2*b=7-3*sqrt(5). - G. C. Greubel, Oct 17 2015
a(n) = (A337928(n+1) - A337929(n+1)) / 2. - Flávio V. Fernandes, Feb 06 2021
Sum_{n>=1} 1/a(n) = sqrt(5)/2 - 1 = A176055 - 2. - Amiram Eldar, Mar 04 2021
Showing 1-5 of 5 results.