cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166522 a(n) = 7*n - a(n-1), with a(1) = 1.

Original entry on oeis.org

1, 13, 8, 20, 15, 27, 22, 34, 29, 41, 36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 83, 78, 90, 85, 97, 92, 104, 99, 111, 106, 118, 113, 125, 120, 132, 127, 139, 134, 146, 141, 153, 148, 160, 155, 167, 162, 174, 169, 181, 176, 188, 183, 195, 190, 202, 197, 209, 204
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    A166522:= func< n | ( 7*n -5 +17*((n+1) mod 2) )/2 >;
    [A166522(n): n in [1..100]]; // G. C. Greubel, Aug 03 2024
    
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==7n-a[n-1]},a,{n,60}] (* or *) LinearRecurrence[{1,1,-1},{1,13,8},60] (* Harvey P. Dale, Jun 07 2012 *)
  • SageMath
    def A166522(n): return ( 7*n -5 +17*((n+1)%2) )//2
    [A166522(n) for n in range(1,101)] # G. C. Greubel, Aug 03 2024

Formula

G.f.: x*(1+12*x-6*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Mar 08 2011
a(n) = a(n-1) + a(n-2) - a(n-3), a(1)=1, a(2)=13, a(3)=8. - Harvey P. Dale, Jun 07 2012
E.g.f.: (1/4)*(17*exp(-x) + 7*(1 + 2*x)*exp(x) - 24). - G. C. Greubel, May 16 2016
a(n) = (1/4)*(14*n + 7 + 17*(-1)^n). - G. C. Greubel, Aug 03 2024