cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166526 a(n) = 12*n - a(n-1), with n>1, a(1)=1.

Original entry on oeis.org

1, 23, 13, 35, 25, 47, 37, 59, 49, 71, 61, 83, 73, 95, 85, 107, 97, 119, 109, 131, 121, 143, 133, 155, 145, 167, 157, 179, 169, 191, 181, 203, 193, 215, 205, 227, 217, 239, 229, 251, 241, 263, 253, 275, 265, 287, 277, 299, 289, 311, 301, 323, 313, 335, 325, 347
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 12*n-Self(n-1): n in [1..80]]; // Vincenzo Librandi, Sep 13 2013
    
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==12n-a[n-1]},a[n],{n,60}] (* or *) LinearRecurrence[{1,1,-1},{1,23,13},60] (* Harvey P. Dale, Aug 10 2011 *)
    CoefficientList[Series[(1 + 22 x - 11 x^2) / ((x - 1)^2 (1 + x)), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 13 2013 *)
  • SageMath
    def A166526(n): return 6*n - 5 + 16*((n+1)%2)
    [A166526(n) for n in range(1, 101)] # G. C. Greubel, Aug 04 2024

Formula

From Harvey P. Dale, Aug 10 2011: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3), a(1)=1, a(2)=23, a(3)=13, for n>3.
G.f.: x*(1+22*x-11*x^2)/((x-1)^2*(1+x)). (End)
E.g.f.: 8*exp(-x) + 3*(1 + 2*x)*exp(x) - 11. - G. C. Greubel, May 16 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/11 + (1/6 + 1/(4*sqrt(3)))*Pi. - Amiram Eldar, Feb 24 2023
a(n) = 6*n + 3 + 8*(-1)^n. - G. C. Greubel, Aug 04 2024