cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166542 a(n) = 6*n - a(n-1), with n>1, a(1)=2.

Original entry on oeis.org

2, 10, 8, 16, 14, 22, 20, 28, 26, 34, 32, 40, 38, 46, 44, 52, 50, 58, 56, 64, 62, 70, 68, 76, 74, 82, 80, 88, 86, 94, 92, 100, 98, 106, 104, 112, 110, 118, 116, 124, 122, 130, 128, 136, 134, 142, 140, 148, 146, 154, 152, 160, 158, 166, 164, 172, 170, 178, 176, 184
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Programs

  • Magma
    [n eq 1 select 2 else 6*n-Self(n-1): n in [1..80]]; // Vincenzo Librandi, Sep 13 2013
  • Mathematica
    CoefficientList[Series[-(- 2 - 8 x + 4 x^2)/((1 + x) (x - 1)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 13 2013 *)
    LinearRecurrence[{1,1,-1}, {2, 10, 8}, 50] (* G. C. Greubel, May 16 2016 *)

Formula

G.f.: -x*(-2-8*x+4*x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 13 2013
From G. C. Greubel, May 16 2016: (Start)
E.g.f.: (1/2)*(3*(1 + 2*x)*exp(x) + 5*exp(-x) - 8).
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
a(n) = 2*A166517(n). - Philippe Deléham, Nov 29 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/4 + Pi/(6*sqrt(3)). - Amiram Eldar, Feb 23 2023