cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166555 Triangle read by rows, T(n, k) = 2^k * A047999(n, k).

Original entry on oeis.org

1, 1, 2, 1, 0, 4, 1, 2, 4, 8, 1, 0, 0, 0, 16, 1, 2, 0, 0, 16, 32, 1, 0, 4, 0, 16, 0, 64, 1, 2, 4, 8, 16, 32, 64, 128, 1, 0, 0, 0, 0, 0, 0, 0, 256, 1, 2, 0, 0, 0, 0, 0, 0, 256, 512, 1, 0, 4, 0, 0, 0, 0, 0, 256, 0, 1024, 1, 2, 4, 8, 0, 0, 0, 0, 256, 512, 1024, 2048, 1, 0, 0, 0, 16, 0, 0, 0, 256, 0, 0, 0, 4096
Offset: 0

Views

Author

Gary W. Adamson, Oct 17 2009

Keywords

Comments

Number of positive terms in n-th row (n>=0) equals to A000120(n). - Vladimir Shevelev, Oct 25 2010
Former name: Triangle read by rows, Sierpinski's gasket, A047999 * (1,2,4,8,...) diagonalized. - G. C. Greubel, Dec 02 2024

Examples

			First few rows of the triangle are:
  1;
  1, 2;
  1, 0, 4;
  1, 2, 4, 8;
  1, 0, 0, 0, 16;
  1, 2, 0, 0, 16,.32;
  1, 0, 4, 0, 16,..0,..64;
  1, 2, 4, 8, 16,.32,..64,..128;
  1, 0, 0, 0,..0,..0,...0,....0,..256;
  1, 2, 0, 0,..0,..0,...0,....0,..256,...512;
  1, 0, 4, 0,..0,..0,...0,....0,..256,.....0,...1024;
  1, 2, 4, 8,..0,..0,...0,....0,..256,...512,...1024,...2048;
  1, 0, 0, 0, 16,..0,...0,....0,..256,.....0,......0,......0,..4096;
  ...
		

Crossrefs

Sums include: A001317 (row), A101624 (diagonal), A101625 (odd rows of signed diagonal).

Programs

  • Magma
    A166555:= func< n,k | 2^k*( Binomial(n,k) mod 2) >;
    [A166555(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 01 2024
    
  • Mathematica
    A166555[n_, k_]:= 2^k*Mod[Binomial[n, k], 2];
    Table[A166555[n,k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 01 2024 *)
  • SageMath
    def A166555(n,k): return 2^k*int(not ~n & k) if kA166555(n,k) for k in range(n+1)] for n in range(15)])) # G. C. Greubel, Dec 01 2024

Formula

Triangle read by rows, A047999 * Q. A047999 = Sierpinski's gasket, Q = an infinite lower triangular matrix with (1,2,4,8,...) as the main diagonal and the rest zeros.
Sum_{k=0..n} T(n, k) = A001317(n).
From G. C. Greubel, Dec 02 2024: (Start)
T(n, k) = 2^k * (binomial(n,k) mod 2).
T(n, n) = A000079(n).
T(2*n, n) = A000007(n).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*( (1+(-1)^n)*A038183(n/2) - (1-(-1)^n) *A038183((n-1)/2) ).
Sum_{k=0..floor(n/2)} T(n-k, k) = A101624(n).
Sum_{k=0..floor((2*m+1)/2)} T(2*m-k+1, k) = A101625(m+1), m >= 0. (End)

Extensions

New name by G. C. Greubel, Dec 02 2024