A166555 Triangle read by rows, T(n, k) = 2^k * A047999(n, k).
1, 1, 2, 1, 0, 4, 1, 2, 4, 8, 1, 0, 0, 0, 16, 1, 2, 0, 0, 16, 32, 1, 0, 4, 0, 16, 0, 64, 1, 2, 4, 8, 16, 32, 64, 128, 1, 0, 0, 0, 0, 0, 0, 0, 256, 1, 2, 0, 0, 0, 0, 0, 0, 256, 512, 1, 0, 4, 0, 0, 0, 0, 0, 256, 0, 1024, 1, 2, 4, 8, 0, 0, 0, 0, 256, 512, 1024, 2048, 1, 0, 0, 0, 16, 0, 0, 0, 256, 0, 0, 0, 4096
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 2; 1, 0, 4; 1, 2, 4, 8; 1, 0, 0, 0, 16; 1, 2, 0, 0, 16,.32; 1, 0, 4, 0, 16,..0,..64; 1, 2, 4, 8, 16,.32,..64,..128; 1, 0, 0, 0,..0,..0,...0,....0,..256; 1, 2, 0, 0,..0,..0,...0,....0,..256,...512; 1, 0, 4, 0,..0,..0,...0,....0,..256,.....0,...1024; 1, 2, 4, 8,..0,..0,...0,....0,..256,...512,...1024,...2048; 1, 0, 0, 0, 16,..0,...0,....0,..256,.....0,......0,......0,..4096; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
A166555:= func< n,k | 2^k*( Binomial(n,k) mod 2) >; [A166555(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 01 2024
-
Mathematica
A166555[n_, k_]:= 2^k*Mod[Binomial[n, k], 2]; Table[A166555[n,k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 01 2024 *)
-
SageMath
def A166555(n,k): return 2^k*int(not ~n & k) if k
A166555(n,k) for k in range(n+1)] for n in range(15)])) # G. C. Greubel, Dec 01 2024
Formula
Triangle read by rows, A047999 * Q. A047999 = Sierpinski's gasket, Q = an infinite lower triangular matrix with (1,2,4,8,...) as the main diagonal and the rest zeros.
Sum_{k=0..n} T(n, k) = A001317(n).
From G. C. Greubel, Dec 02 2024: (Start)
T(n, k) = 2^k * (binomial(n,k) mod 2).
T(n, n) = A000079(n).
T(2*n, n) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A101624(n).
Sum_{k=0..floor((2*m+1)/2)} T(2*m-k+1, k) = A101625(m+1), m >= 0. (End)
Extensions
New name by G. C. Greubel, Dec 02 2024
Comments