A166586 Totally multiplicative sequence with a(p) = p - 2 for prime p.
1, 0, 1, 0, 3, 0, 5, 0, 1, 0, 9, 0, 11, 0, 3, 0, 15, 0, 17, 0, 5, 0, 21, 0, 9, 0, 1, 0, 27, 0, 29, 0, 9, 0, 15, 0, 35, 0, 11, 0, 39, 0, 41, 0, 3, 0, 45, 0, 25, 0, 15, 0, 51, 0, 27, 0, 17, 0, 57, 0, 59, 0, 5, 0, 33, 0, 65, 0, 21, 0, 69, 0, 71, 0, 9, 0
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A000244 (powers of 3).
Programs
-
Maple
f:= proc(n) local t; mul((t[1]-2)^t[2],t=ifactors(n)[2]) end proc: map(f, [$1..100]); # Robert Israel, Jun 07 2016
-
Mathematica
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jun 06 2016 *)
-
PARI
a(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] -= 2); factorback(f); \\ Michel Marcus, Dec 13 2014
-
PARI
for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X+2*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2023
Formula
Multiplicative with a(p^e) = (p-2)^e. If n = Product p(k)^e(k) then a(n) = Product (p(k) - 2)^e(k). a(2k) = 0 for k >= 1.
a(A000244(n)) = 1. - Michel Marcus, Dec 13 2014
Dirichlet g.f.: 1 / Product_{p prime} (1 - p^(1 - s) + 2*p^(-s)). The Dirichlet inverse is multiplicative with b(p) = 2 - p, b(p^e) = 0, for e > 1. - Álvar Ibeas, Nov 24 2017 [corrected by Vaclav Kotesovec, Feb 10 2023]
Sum_{k=1..n} a(k) ~ c * n^2/2, where c = Product_{primes} (1 - 1/(1 + p*(p-1)/2)) = 0.3049173579282080265466051390930446635010608835584906520231313997... - Vaclav Kotesovec, Feb 10 2023
Extensions
More terms from Alonso del Arte, Dec 10 2014
a(69) and a(75) corrected by G. C. Greubel, Jun 06 2016
Erroneous formula and program removed by G. C. Greubel, Jun 06 2016