cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166586 Totally multiplicative sequence with a(p) = p - 2 for prime p.

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 5, 0, 1, 0, 9, 0, 11, 0, 3, 0, 15, 0, 17, 0, 5, 0, 21, 0, 9, 0, 1, 0, 27, 0, 29, 0, 9, 0, 15, 0, 35, 0, 11, 0, 39, 0, 41, 0, 3, 0, 45, 0, 25, 0, 15, 0, 51, 0, 27, 0, 17, 0, 57, 0, 59, 0, 5, 0, 33, 0, 65, 0, 21, 0, 69, 0, 71, 0, 9, 0
Offset: 1

Views

Author

Jaroslav Krizek, Oct 17 2009

Keywords

Crossrefs

Cf. A000244 (powers of 3).

Programs

  • Maple
    f:= proc(n) local t;
        mul((t[1]-2)^t[2],t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jun 07 2016
  • Mathematica
    a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] - 2)^fi[[All, 2]])); Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jun 06 2016 *)
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] -= 2); factorback(f); \\ Michel Marcus, Dec 13 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X+2*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2023

Formula

Multiplicative with a(p^e) = (p-2)^e. If n = Product p(k)^e(k) then a(n) = Product (p(k) - 2)^e(k). a(2k) = 0 for k >= 1.
a(A000244(n)) = 1. - Michel Marcus, Dec 13 2014
Dirichlet g.f.: 1 / Product_{p prime} (1 - p^(1 - s) + 2*p^(-s)). The Dirichlet inverse is multiplicative with b(p) = 2 - p, b(p^e) = 0, for e > 1. - Álvar Ibeas, Nov 24 2017 [corrected by Vaclav Kotesovec, Feb 10 2023]
Sum_{k=1..n} a(k) ~ c * n^2/2, where c = Product_{primes} (1 - 1/(1 + p*(p-1)/2)) = 0.3049173579282080265466051390930446635010608835584906520231313997... - Vaclav Kotesovec, Feb 10 2023

Extensions

More terms from Alonso del Arte, Dec 10 2014
a(69) and a(75) corrected by G. C. Greubel, Jun 06 2016
Erroneous formula and program removed by G. C. Greubel, Jun 06 2016