cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166590 Totally multiplicative sequence with a(p) = p+2 for prime p.

Original entry on oeis.org

1, 4, 5, 16, 7, 20, 9, 64, 25, 28, 13, 80, 15, 36, 35, 256, 19, 100, 21, 112, 45, 52, 25, 320, 49, 60, 125, 144, 31, 140, 33, 1024, 65, 76, 63, 400, 39, 84, 75, 448, 43, 180, 45, 208, 175, 100, 49, 1280, 81, 196, 95, 240, 55, 500, 91, 576, 105, 124, 61, 560
Offset: 1

Views

Author

Jaroslav Krizek, Oct 17 2009

Keywords

Comments

From Peter Munn, Feb 16 2024: (Start)
Consider the orthotope with sides given by the prime factors of n (including repetitions). a(n) is the sum of the sizes of all the orthotope's elements (vertices, edges, faces, ..., whole orthotope) with the size of a vertex taken to be 1. See the example.
If, instead, we identify congruent parallel elements (i.e., we use only one element with a given dimension and orientation) we get A003959.
(End)

Examples

			For n = 12. 12 = 2 * 2 * 3, so we sum the sizes of the elements of a cuboid with base 2 X 2 and height 3.
  Vertices: 8 of nominal size 1                 8
  Vertical edges: 4 of length 3         12
  Horizontal edges: 8 of length 2       16
   Total edge length:                  ---     28
  Vertical faces: 4 of area 2 * 3       24
  Horizontal faces: 2 of area 2 * 2      8
    Total surface area:                ---     32
  Volume: n = 2 * 2 * 3                        12
                                              ---
  Vertices + lengths + areas + volume:         80
So a(12) = 80.
		

Crossrefs

Programs

  • Mathematica
    a166590[n_] := {1}~Join~Rest[Times @@ Power @@@ Transpose[{Plus[First /@ FactorInteger@ #, 2], Last /@ FactorInteger@ #}] & /@ Range@n]; a166590[60] (* Michael De Vlieger, Jan 07 2015 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,1] += 2); factorback(f); \\ Michel Marcus, Jun 09 2014
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X-2*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A166590(n): return prod((p+2)**e for p, e in factorint(n).items()) # Chai Wah Wu, Dec 26 2022

Formula

Multiplicative with a(p^e) = (p+2)^e.
If n = Product p(k)^e(k) then a(n) = Product (p(k)+2)^e(k).
From Vaclav Kotesovec, Feb 26 2023: (Start)
Dirichlet g.f.: Product_{primes p} 1 / (1 - p^(1-s) - 2*p^(-s)).
Dirichlet g.f.: zeta(s-1) * (1 + 2/(2^s - 4)) * Product_{primes p, p>2} (1 + 2/(p^s - p - 2)).
Let f(s) = Product_{primes p, p>2} (1 + 2/(p^s - p - 2)), then Sum_{k=1..n} a(k) has an average value n^2*(f(2)*(2*log(n) + 3*log(2) + 2*gamma - 1)/(8*log(2)) + f'(2)/(4*log(2))), where f(2) = Product_{primes p, p>2} (1 + 2/(p^2 - p - 2)) = 1.8687850774185607888850727174873699009051478019094666888484965828668606561..., f'(2) = f(2) * Sum_{primes p, p>2} (2*p*log(p) / (-p^3 + 2*p^2 + p - 2)) = -2.563594878667999839768204519417845474796924720924625514292420625983768019... and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

More terms from Michel Marcus, Jun 09 2014