A166590 Totally multiplicative sequence with a(p) = p+2 for prime p.
1, 4, 5, 16, 7, 20, 9, 64, 25, 28, 13, 80, 15, 36, 35, 256, 19, 100, 21, 112, 45, 52, 25, 320, 49, 60, 125, 144, 31, 140, 33, 1024, 65, 76, 63, 400, 39, 84, 75, 448, 43, 180, 45, 208, 175, 100, 49, 1280, 81, 196, 95, 240, 55, 500, 91, 576, 105, 124, 61, 560
Offset: 1
Examples
For n = 12. 12 = 2 * 2 * 3, so we sum the sizes of the elements of a cuboid with base 2 X 2 and height 3. Vertices: 8 of nominal size 1 8 Vertical edges: 4 of length 3 12 Horizontal edges: 8 of length 2 16 Total edge length: --- 28 Vertical faces: 4 of area 2 * 3 24 Horizontal faces: 2 of area 2 * 2 8 Total surface area: --- 32 Volume: n = 2 * 2 * 3 12 --- Vertices + lengths + areas + volume: 80 So a(12) = 80.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a166590[n_] := {1}~Join~Rest[Times @@ Power @@@ Transpose[{Plus[First /@ FactorInteger@ #, 2], Last /@ FactorInteger@ #}] & /@ Range@n]; a166590[60] (* Michael De Vlieger, Jan 07 2015 *)
-
PARI
a(n) = my(f=factor(n)); for (i=1, #f~, f[i,1] += 2); factorback(f); \\ Michel Marcus, Jun 09 2014
-
PARI
for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X-2*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 10 2023
-
Python
from math import prod from sympy import factorint def A166590(n): return prod((p+2)**e for p, e in factorint(n).items()) # Chai Wah Wu, Dec 26 2022
Formula
Multiplicative with a(p^e) = (p+2)^e.
If n = Product p(k)^e(k) then a(n) = Product (p(k)+2)^e(k).
From Vaclav Kotesovec, Feb 26 2023: (Start)
Dirichlet g.f.: Product_{primes p} 1 / (1 - p^(1-s) - 2*p^(-s)).
Dirichlet g.f.: zeta(s-1) * (1 + 2/(2^s - 4)) * Product_{primes p, p>2} (1 + 2/(p^s - p - 2)).
Let f(s) = Product_{primes p, p>2} (1 + 2/(p^s - p - 2)), then Sum_{k=1..n} a(k) has an average value n^2*(f(2)*(2*log(n) + 3*log(2) + 2*gamma - 1)/(8*log(2)) + f'(2)/(4*log(2))), where f(2) = Product_{primes p, p>2} (1 + 2/(p^2 - p - 2)) = 1.8687850774185607888850727174873699009051478019094666888484965828668606561..., f'(2) = f(2) * Sum_{primes p, p>2} (2*p*log(p) / (-p^3 + 2*p^2 + p - 2)) = -2.563594878667999839768204519417845474796924720924625514292420625983768019... and gamma is the Euler-Mascheroni constant A001620. (End)
Extensions
More terms from Michel Marcus, Jun 09 2014
Comments